Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures having an enhanced ability to withstand a relatively high supply voltage

Inactive Publication Date: 2001-10-30
STMICROELECTRONICS SRL
View PDF14 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

In the case of an n-channel LDMOS transistor, the presence of this auxiliary n-doped region, obtained by implanting phosphorus through the drain area, increases the breakdown voltage because the field intensity between the drain and the gate is reduced while obtaining a reduction too of the conducting resistance (R.sub.on) of the transistor, which is extremely advantageous when the LDMOS transistor itself is used as an integrated power switching device, as it is often the case in these mixed technology integrated devices.
The CMOS structures formed by pairs of complementary LDMOS transistors, when provided with such an n-doped region by phosphorus implantation, become capable of operating with a supply voltage of about 20 V without requiring special precautions, such as "field plates", thus remaining advantageously compact.
In the case of an n-channel MOS transistor belonging to another type of CMOS structure, the n-doped region, obtained by phosphorus implantation in the drain area of the transistor, reduces the sensitivity to electrical stresses due to hot electrons, by acting as a "drain extension" region; this permits to the transistor to withstand a supply voltage of about 12 V.
In the case of an isolated collector, vertical PNP bipolar transistor, the additional n-doped region obtained by phosphorus implantation through the emitter area of the transistor, permits to improve the transistor's performance transistors by increasing the charge in the base region of the transistor and to increase the "punch-through" voltage between emitter and collector.
The parallel ability of the different CMOS structures and vertical PNP transistors to withstand a specifically increased operating voltage specifically increased permits to build mixed technology integrated circuits (i.e. "smart power" devices) with far less pronounced interfacing problems among the different types of circuits, with enhanced possibilities of fully exploiting the intrinsic peculiarities of the different devices and with a higher degree of reliability.Iadd.. .Iaddend.

Problems solved by technology

This makes difficult interfacing the power transistor (e.g. VDMOS) with the driving circuitry.
In "smart power" type integrated circuits, this particular problem is commonly obviated by using a "level shifter" circuit, which necessarily makes the driving circuit more complicated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures having an enhanced ability to withstand a relatively high supply voltage
  • Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures having an enhanced ability to withstand a relatively high supply voltage
  • Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures having an enhanced ability to withstand a relatively high supply voltage

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

An hypothetical partial cross section of an integrated "smart power" type integrated device, wherein it is relatively easy to put in evidence, though in a schematic way, the aspects of the invention, is shown in FIG. 1. The depicted cross section does not include VDMOS power transistors, which may be easily imagined present in a different zone of the integrated device from the zone shown in the partial cross section of the figure, wherein two different CMOS structures are depicted, a first structure formed by an n-channel and a p-channel LDMOS transistor and a second structure formed by a p-channel and by an n-channel MOS transistor, and the structure of an isolated collector, vertical PNP bipolar transistor.

The device comprises a p-type silicon substrate 1 on which an epitaxial n-type silicon layer 2 has been grown after doping with arsenic and / or with boron certain areas defined on the surface of the monocrystalline silicon substrate 1 in order to form the n.sup.+ buried layers 3 ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Complementary LDMOS and MOS structures and vertical PNP transistors capable of withstanding a relatively high voltage may be realized in a mixed-technology integrated circuit of the so-called "smart power" type, by forming a phosphorus doped n-region of a similar diffusion profile, respectively in: The drain zone of the n-channel LDMOS transistors, in the body zone of the p-channel LDMOS transistors forming first CMOS structures; in the drain zone of n-channel MOS transistors belonging to second CMOS structures and in a base region near the emitter region of isolated collector, vertical PNP transistors, thus simultaneously achieving the result of increasing the voltage withstanding ability of all these monolithically integrated structures. The complementary LDMOS structures may be used either as power structures having a reduced conduction resistance or may be used for realizing CMOS stages capable of operating at a relatively high voltage (of about 20V) thus permitting a direct interfacing with VDMOS power devices without requiring any "level shifting" stages. The whole integrated circuit has less interfacing problems and improved electrical and reliability characteristics.

Description

BACKGROUND OF THE INVENTION1. Field of the InventionThe present invention relates to a mixed technology, "smart power", integrated device containing power transistors and control logic and analog driving circuitry combined in a monolithic silicon chip.2. Description of the Prior ArtThe commercial success of so-called "smart power" integrated circuits, wherein the analog signal processing circuitry, the control logic circuitry and the output power devices are conveniently monolithically integrated in a single chip, originated and sprung from the overcoming of compatibility problems among the different fabrication processes relative to the different integrated devices, often necessarily operating under different supply voltages. Most often, even though non-exclusively, the power section of such integrated circuits employs VDMOS transistors which typically require a driving gate voltage level comprised between about 10 V-20 V.This makes difficult interfacing the power transistor (e.g. ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L27/085H01L27/06H01L27/092
CPCH01L27/0623H01L27/0922
Inventor CONTIERO, CLAUDIOGALBIATI, PAOLAZULLINO, LUCIA
Owner STMICROELECTRONICS SRL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products