A kind of selenium-doped lithium-rich manganese-based positive electrode material and its preparation method and application
A cathode material, lithium-rich manganese-based technology, which is applied in the field of preparation of lithium-rich manganese-based cathode materials, can solve problems such as poor rate performance, capacity and voltage decay, achieves simple preparation process, suppresses capacity decay and voltage drop, and is easy to popularize Effect
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
preparation example Construction
[0048] Its preparation method comprises the following steps:
[0049] S1. Mix the precursor and the lithium source in a dry environment for 0.5-1 h, and mix them uniformly to obtain a mixture; wherein, the mass excess coefficient of the lithium source is 3-10%; the lithium source is a common lithium-containing compound, including But not limited to lithium carbonate, lithium hydroxide monohydrate, lithium hydroxide, lithium nitrate, etc.; the precursor can be replaced by carbonate, oxalate, acetate or hydroxide of nickel-cobalt-manganese in different proportions;
[0050] S2. Put the mixture obtained in step S1 into a calcination device for calcination treatment under an oxygen atmosphere. After the calcination, cool to room temperature with the furnace to obtain a lithium-rich manganese-based positive electrode material; the calcination adopts a two-stage calcination method: the first The first stage of calcination is calcination at 500~700 ℃ for 5~10 h, and the second stage ...
Embodiment 1
[0058] A method for preparing a lithium-rich manganese-based positive electrode material, comprising the following steps:
[0059] (1) Add 2 g precursor Mn 0.672 Ni 0.164 co 0.164 CO 3 with 1.02 g LiOH·H 2 O was placed in an agate mortar and mixed for 1 h in a dry environment to obtain a mixture precursor;
[0060] (2) Transfer the homogeneous mixture precursor in step (1) to the corundum ark, and then place it in an oxygen atmosphere tube furnace for calcination. The calcination condition is 5 ℃ / min to 500 ℃, and after constant temperature for 5 h, The temperature was raised to 900 °C at 5 °C / min, kept at a constant temperature for 12 h, and cooled to room temperature with the furnace to obtain a lithium-rich manganese-based cathode material sample, which was named LRM.
Embodiment 2
[0062] A preparation method of a selenium-doped lithium-rich manganese-based positive electrode material, comprising the following steps:
[0063] S1. Mix 2 g of the lithium-rich manganese-based positive electrode material prepared in Example 1 with 20 mg of commercial selenium powder for 2 h, transfer the uniformly mixed material to a corundum ark, and then place it in a tube furnace with an argon atmosphere Medium calcination, the calcination condition is 2 ℃ / min heating up to 500 ℃, constant temperature for 5 h, gas flow 2 mL / min;
[0064] S2. Take the sample after calcination in step S1 and add it to 10 mL of carbon disulfide solution at 500 r / min, stir for 5 h, filter and wash with alcohol for 4 times, and vacuum-dry at 120 °C for 12 h to obtain a lithium-rich solution doped with selenium anions. The manganese-based cathode material is named Se-LRM, and electron spectroscopy analysis shows that the mass fraction of selenium is 0.86%.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com