Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Particulate water absorbing agent with water-absorbing resin as main component

a technology of water-absorbing resin and absorbing agent, which is applied in the field of particulate water absorbing agent, can solve the problems of not satisfactorily fulfilling performance and not reaching practically sufficient performan

Inactive Publication Date: 2007-03-22
NIPPON SHOKUBAI CO LTD
View PDF34 Cites 65 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0062] Using the particulate water absorbing agent of the present invention, due to having specific absorption capacity and specific particle size distribution, in practical application as absorbing articles such as a diaper, particularly in absorbing ability in short period, not conventionally obtained performance can be attained. In particular, rewet amount can be reduced and improvement effect of dry feeling at diaper surface is significant.
[0063] Further, due to inhibition of deterioration caused by urine, it provides superior gel stability and maintains absorbing performance over long period, therefore it reduces discomfort for persons wearing absorbing articles.
[0064] In the present invention, because deterioration caused by urine can be inhibited and simultaneously specific particle size distribution is provided, size segregation is less and in powder transfer to produce the particulate water absorbing agent and produce absorbing articles such as a diaper, superior piston-flow property is provided and pulsation which is periodical change in powder feed amount is inhibited. In addition to this, in production of absorbing articles such as a diaper, mixing is easy between the particulate water absorbing agent of the present invention and hydrophilic fibers such as wood crushed pulp, which conveniently provides homogeneous composition. Best Embodiments to Practice the Invention
[0065] Raw materials used for the water-absorbing resin and the water absorbing agent of the present invention and reaction conditions will be explained below. In the present invention, the followings are values obtained by methods described in Examples shown later: (a) centrifuge retention capacity (CRC) in a physiological saline solution, (b) mass median particle size (D50), (d) increased extractables by deterioration, (e) increased ratio of extractables by deterioration, (f) extractables for 16 hours in a physiological saline solution, (g) absorbency against pressure at 4.8 kPa (AAP4.8 kPa) in a physiological saline solution, (i) absorbency against pressure at 1.9 kPa (AAP1.9 kPa) in a physiological saline solution, (j) absorption speed with vortex method in a physiological saline solution, (k) fluidity after moisture absorption, (l) logarithmic standard deviation of particle size distribution and extractables for one hour in deterioration test liquid.
[0067] A water-absorbing resin of the present invention means a crosslinked polymer which can form hydrogel and is water swelling and non-dissolving in water, for example, water swelling indicates one absorbing large quantity of water in ion exchanged water, such as essentially 5 times or more own weight and preferably 50 to 1000 times. Non-dissolving in water means one with extractables in water in 1 hour of not higher than 50% by weight and in the range described later. Measurement methods thereof are specified in Examples.
[0068] As the water-absorbing resin in the present invention, to attain objectives of the present invention, a water-absorbing resin obtained by crosslinking polymerization of an unsaturated monomer containing an acid group and / or salts thereof is essentially used and preferably (partially) neutralized polymer of polyacrylic acid obtained by polymerizing and crosslinking of an unsaturated monomer mainly composed of acrylic acid and / or salts thereof is used. Any water-absorbing resin may be used as long as it has crosslinked polymerized structure and it may be the water-absorbing resin obtained by crosslinking reaction with a crosslinking agent after polymerization of an unsaturated monomer containing an acid group and / or salts thereof.

Problems solved by technology

Among water-absorbing resins or water absorbing agents which have been developed based on many properties, as described above, those targeted to or with specifications of these properties have also been produced, however, there was a problem that they have not yet satisfactorily fulfilled performance in practical use such as a paper diaper, and the like, even if these properties are controlled.
Practically sufficient performance has not yet attained even by controlling or designing such properties as water-absorption speed, centrifuge retention capacity, absorbency against pressure, gel strength, durability, extractables and particle size whereas many water-absorbing resins or water absorbing agents have been developed and used.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

reference example 1

[0253] Polyethylene glycol diacrylate (average added mole number of ethylene oxide unit: 9) of 4.3 g was dissolved in 1,500 g of an aqueous solution of sodium acrylate having neutralization ratio of 75% by mole (monomer concentration: 24% by weight) to make reaction liquid. Thus obtained reaction liquid was poured into a tray with length of 320 mm, width of 220 mm and height of 50 mm made of stainless steel, with the reaction liquid being 17 mm deep. The stainless steel tray was immersed in a water bath at 30° C., after the top of the tray was sealed with a polyethylene film having a nitrogen gas inlet, an exhaust gas outlet and an inlet of a polymerization initiator. Nitrogen gas was introduced into the reaction liquid to purge dissolved oxygen in the liquid, while controlling the reaction liquid temperature at 30° C. Subsequently, nitrogen gas continued to be introduced in an upper space of the reactor, while exhausting from the other side. The reaction liquid was added with, as p...

reference example 2

[0255] Polyethylene glycol diacrylate (average added mole number of ethylene oxide unit: 9) of 4.0 g was dissolved in 5,500 g of an aqueous solution of sodium acrylate having neutralization ratio of 75% by mole (monomer concentration: 40% by weight) to make reaction liquid. Subsequently, a reactor fabricated by attaching a lid to a 10-L twin-arm type kneader made of stainless steel and equipped with a jacket and two Σ-shaped agitating blades was supplied the reaction liquid and the reaction system was purged dissolved oxygen by introducing with nitrogen gas, while keeping the reaction liquid at 30° C. The reaction liquid was then added with 29.8 g of a 10% by weight aqueous solution of sodium persulfate and 1.5 g of a 1% by weight aqueous solution of L-ascorbic acid, while stirring the reaction liquid, resulting in initiation of polymerization after 1 minute. Peak temperature of polymerization of 93° C. was attained after 15 minutes from initiation of polymerization. After 60 minute...

reference example 3

[0257] Polyethylene glycol diacrylate (average added mole number of ethylene oxide unit: 9) of 2.5 g was dissolved in 5,500 g of an aqueous solution of sodium acrylate having neutralization ratio of 75% by mole (monomer concentration: 38% by weight) to make reaction liquid. After purging dissolved oxygen similarly as in Reference Example 2, the reaction liquid was supplied to the reactor of Reference Example 2 and the reaction system was purged with nitrogen gas, while keeping the reaction liquid at 30° C. The reaction liquid was then added with 29.8 g of a 10% by weight aqueous solution of sodium persulfate and 1.5 g of a 1% by weight aqueous solution of L-ascorbic acid, while stirring the reaction liquid, resulting in initiation of polymerization after about 1 minute. Peak temperature of polymerization of 86° C. was attained after 17 minutes from initiation of polymerization. After 60 minutes from initiation of polymerization, a hydrated gel-like polymer was taken out, which was i...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Lengthaaaaaaaaaa
Lengthaaaaaaaaaa
Timeaaaaaaaaaa
Login to View More

Abstract

The present invention provides a water absorbing agent which maintains excellent water absorbing properties for a long time, even when urine composition of human urine varies depending. A particulate water absorbing agent comprising a water-absorbing resin obtained by crosslinking polymerization of an unsaturated monomer, which exhibits Centrifuge retention capacity in a physiological saline solution of not lower than 32 g / g, mass median particle size (D50) of 200 to 400 μm, ratio of particles with diameter of smaller than 150 μm of 0 to 2% by weight, and increased extractables by deterioration of 0 to 15% by weight and extractables for one hour in deterioration test liquid of 0.1 to 30% by weight.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a particulate water absorbing agent including a water-absorbing resin as a main component. In particular, it relates to a particulate water absorbing agent fulfilling superior absorption ability conventionally not obtained in practical applications as absorbing articles such as a diaper. [0003] 2. Description of Related Art [0004] At present, as component materials in sanitary goods such as a paper diaper, a sanitary napkin, an incontinence pad, and the like, a water-absorbing resin to absorb body fluid and hydrophilic fibers such as pulp are widely used. As the water-absorbing resin, for example, partially neutralized and crosslinked polyacrylic acid, hydrolysates of starch-acrylic acid graft polymer, saponified vinyl acetate-acrylic acid ester copolymers, hydrolysates of acrylonitrile copolymers or acrylamide copolymers or crosslinked polymers thereof, crosslinked polymers of catio...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B32B5/02A61L15/60C08J3/12C08J3/24
CPCC08J3/12C08J3/245C08J2300/14Y10T428/2991Y10T428/254Y10T428/2982Y10T428/2998Y10T428/249924Y10T442/2344C08J3/075A61L15/60
Inventor WADA, KATSUYUKIKIMURA, KAZUKIUEDA, HIROKOKANTO, TERUYUKIFUJIMARU, HIROTAMA
Owner NIPPON SHOKUBAI CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products