Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Preparation method of photoelectric chemical chloramphenicol biosensor based on two-dimension nanometer photoelectric material

A biosensor, photoelectrochemical technology, applied in the fields of electrochemical variables of materials, material analysis by electromagnetic means, scientific instruments, etc., can solve the problems of low sensitivity of photoelectrochemical sensors, unfavorable practical application, weakening of photoelectric signals, etc. Wide range of photosensitive wavelengths, increased photocatalytic activity, and time-saving effects

Inactive Publication Date: 2016-12-07
UNIV OF JINAN
View PDF5 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0008] In addition, the photogenerated electron-hole pairs of a single titanium dioxide nanomaterial are easy to recombine, which leads to the weakening of the photoelectric signal, and the poor conductivity of titanium dioxide also limits the sensitivity of photoelectrochemical sensors constructed from a single titanium dioxide nanomaterial. application

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0041] Example 1 Mn-TiO 2 / MoS 2 preparation of

[0042] (1) Add 0.6 g of molybdenum disulfide powder and 0.2 mmol of manganese salt to 3 mL of n-butyllithium solution, and stir for 12 hours under nitrogen protection at 60 °C to obtain the reacted solution;

[0043] (2) Wash the reacted solution in step (1) with a non-polar solvent, and then perform ultrasonic treatment in a water bath at 60 °C. After the treatment, wash the treated solution with a non-polar solvent, and dry it in vacuum to obtain manganese Intercalated molybdenum disulfide nanomaterials;

[0044] (3) Take 500 mg of manganese-intercalated molybdenum disulfide nanomaterials prepared in step (2) and add them to 5 mL of tetrabutyl titanate. After stirring for 1 hour, slowly add 0.5 mL of hydrofluoric acid while stirring, and then Reaction in the reactor at 160°C for 18 hours;

[0045] (4) The reaction product obtained in step (3) was centrifuged and washed three times with ultrapure water and absolute ethanol...

Embodiment 2

[0050] Example 2 Mn-TiO 2 / MoS 2 preparation of

[0051] (1) Add 0.6 g of molybdenum disulfide powder and 1.0 mmol of manganese salt to 5 mL of n-butyllithium solution, and stir for 24 hours under nitrogen protection at 30 °C to obtain the reacted solution;

[0052] (2) Wash the reacted solution in step (1) with a non-polar solvent, and then perform ultrasonic treatment in a water bath at 30 °C. After the treatment, wash the treated solution with a non-polar solvent, and dry it in vacuum to obtain manganese Intercalated molybdenum disulfide nanomaterials;

[0053] (3) Add 200 mg of manganese-intercalated molybdenum disulfide nanomaterials prepared in step (2) into 5 mL of tetrabutyl titanate, stir for 1 hour, then slowly add 0.6 mL of hydrofluoric acid while stirring, and then Reaction in the reactor at 180°C for 20 hours;

[0054] (4) The reaction product obtained in step (3) was centrifuged and washed three times with ultrapure water and absolute ethanol, and then vacuum...

Embodiment 3

[0059] Example 3 Mn-TiO 2 / MoS 2 preparation of

[0060] (1) Add 0.6 g of molybdenum disulfide powder and 2.0 mmol of manganese salt into 10 mL of n-butyllithium solution, and stir for 48 hours under nitrogen protection at 50 °C to obtain the reacted solution;

[0061] (2) Wash the reacted solution in step (1) with a non-polar solvent, and then perform ultrasonic treatment in a water bath at 50 °C. After the treatment, wash the treated solution with a non-polar solvent, and dry it in vacuum to obtain manganese Intercalated molybdenum disulfide nanomaterials;

[0062] (3) Add 10 mg of the manganese-intercalated molybdenum disulfide nanomaterials prepared in step (2) into 5 mL of tetrabutyl titanate, stir for 1 hour, slowly add 0.8 mL of hydrofluoric acid while stirring, and then Reaction in the reactor at 200°C for 24 hours;

[0063] (4) The reaction product obtained in step (3) was centrifuged and washed three times with ultrapure water and absolute ethanol, and then vacuu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
concentrationaaaaaaaaaa
Login to View More

Abstract

The invention discloses a preparation method of a photoelectric chemical chloramphenicol biosensor based on a two-dimension nanometer photoelectric material, and belongs to the technical field of novel nanometer function materials and biosensors. The preparation method comprises the steps of firstly preparing the novel two-dimension nanometer photoelectric material and loading a chloramphenicol antibody and fixing alkaline phosphatase through good biocompatibility and large specific surface area of the material, wherein the material is a two-dimension nanometer compound material Mn-TiO2-MoS2 which is formed by in-situ composition of manganese doped titanium dioxide diamonds and molybdenum disulfide. In detection, the alkaline phosphatase can catalyze L-ascorbic acid-2-trisodium phosphate AAP to in situ generate L-ascorbic acid AA and further can provide an electron donor for photoelectric detection, the light current intensity can be correspondingly reduced through the effect of quantitative combination of specificity of the antibody and antigen to electronic transmission capacity, and finally construction of the biosensor for detecting chloramphenicol through an mark-free photoelectric chemical method is achieved.

Description

technical field [0001] The invention relates to a preparation method of a photoelectrochemical chloramphenicol biosensor. It belongs to the technical field of new nanometer functional materials and biosensors. Background technique [0002] Chloramphenicol is an antibiotic produced by Streptomyces venezuela. It is a broad-spectrum antibacterial antibiotic and is often used as a veterinary drug. However, the human body is more sensitive to chloramphenicol than animals, especially the drug metabolism function of infants and young children is not perfect. Excessive chloramphenicol can cause fatal "gray baby syndrome" reactions, and even cause human aplastic impairment in severe cases sexual anemia. [0003] At present, the methods for detecting chloramphenicol mainly include chromatography and mass spectrometry. Such methods require expensive instruments and complex operations, and laboratory personnel need professional training before they can perform detection. Therefore, ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G01N27/416G01N27/36
CPCG01N27/36G01N27/416
Inventor 张勇杜斌马洪敏吴丹范大伟
Owner UNIV OF JINAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products