Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

90results about How to "Rapid selective detection" patented technology

Photoelectrochemical sensor for estradiol based on boron-doped iron cobalt oxide two-dimensional nano composite material as well as preparation method and application of photoelectrochemical sensor

The invention discloses a photoelectrochemical sensor for estradiol based on a boron-doped iron cobalt oxide two-dimensional nano composite material as well as a preparation method and application of the photoelectrochemical sensor. The preparation method comprises the following steps: firstly, modifying a two-dimensional nano material g-C3N4 on ITO (Indium Tin Oxide) conductive glass by adopting an electrodeposition method; secondly, carrying out in-situ grown of iron cobalt oxide by adopting a hydrothermal method, and further preparing to obtain a working electrode loaded with the g-C3N4, doped with boron and modified by the iron cobalt oxide Bi@Fe*Co<1->*O3/g-C3N4; finally, loading an estradiol antibody by using good biocompatibility and large specific surface area of the material. During detection, L-ascorbic acid-2-trisodium phosphate (AAP) can be catalyzed by boron-doped iron cobalt oxide Bi@Fe*Co<1->*O3 to generate L-ascorbic acid AA in situ, further an electron donor is provided for photoelectric detection, and then photocurrent intensity is correspondingly reduced by using the influence of specific combination of the antibody and antigen on electronic transmission capacity; finally, the construction of the photoelectrochemical sensor for the estradiol by adopting a mark-free photoelectrochemical detection method is realized.
Owner:山东利源康赛环境咨询有限责任公司

Hydrogen peroxide non-enzyme sensor based on silver-graphene nano composite and manufacturing method thereof

InactiveCN106383158ANo pollution in the processFacilitates direct electrochemical applicationsMaterial electrochemical variablesPlatinumElectricity
The invention relates to a manufacturing method for a hydrogen peroxide non-enzyme sensor based on a silver-graphene nano composite. The manufacturing method comprises the following specific steps of: 1) weighing 5-10mg of graphene oxide, and dissolving the graphene oxide into 5-10 mL of water, thereby obtaining a brown yellow graphene oxide solution; 2) taking a mixed solution containing AgNO3 and KNO3 as an electro-deposition solution; 3) transferring and dispensing 10-15muL of the graphene oxide solution obtained in the step 1) to the surface of a pre-treated glass carbon electrode, and drying in air at the room temperature, thereby obtaining a graphene oxide modified glass carbon electrode; and 4) taking the graphene oxide modified glass carbon electrode as a working electrode, taking a platinum wire electrode as a counter electrode, taking a statured mercurous chloride electrode as a reference electrode, putting the electrodes into the electro-deposition solution prepared in step 2), depositing for 1-3 minutes under constant potential within a range of -0.55V to -0.75V, thereby obtaining a silver-graphene nano composite modified electrode which is used as the hydrogen peroxide non-enzyme sensor. The sensor realizes quick, sensitive and high-selection detection on hydrogen peroxide, and has remarkable advantages in comparison with sensors reported in existing literature.
Owner:ANYANG NORMAL UNIV

Preparation method of photoelectrochemical furazolidone sensor based on dual metal co-doped two-dimensional photosensitizer

The invention discloses a preparation method of a photoelectrochemical furazolidone sensor, and belongs to the technical fields of novel nano functional materials and biosensors. According to the preparation method, a novel dual metal co-doped two-dimensional photosensitizer is prepared at first, namely, iron and manganese co-doped titanium dioxide nano blocks and molybdenum disulfide carry out in-situ synthesis to generate a two-dimensional nano composite material (FeMn-TiO2/MoS2), which has a good biocompatibility and large specific area, then a furazolidone antibody is loaded on the two-dimensional nano composite material, alkaline phosphatase is fixed on the two-dimensional nano composite material; when the photosensitizer is used for detection, alkaline phosphatase can catalyze L-ascorbic acid-2-phosphate trisodium salt (AAP) to generate L-ascorbic acid (AA) in-situ; thus electron donors are provided for photoelectric detection; due to the influence of specific and quantitative combination between antibody and antigen on the electron transmission performance, the photoelectric current strength is correspondingly reduced, and finally a photoelectric sensor for detecting furazolidone through a label-free photoelectric method is manufactured.
Owner:UNIV OF JINAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products