Preparing method and application of electrochemiluminescence carbamate sensor based on cobalt-doped two-dimensional nanometer composite
A carbamate, two-dimensional nanotechnology, applied in the direction of chemical reaction of materials for analysis, chemiluminescence/bioluminescence, etc., can solve the problems of poor conductivity, unfavorable practical application, and low sensitivity of electrochemiluminescence sensors. , to improve the strength and stability, improve the resonance energy transfer ability, and increase the intensity of electrochemiluminescence
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0035] Example 1Co-MoO 3 / TiO 2 g-C 3 N 4 preparation of
[0036] First, add 0.6mmol sodium molybdate and 0.8mmol cobalt salt into 5mL tetrabutyl titanate, slowly add 0.5mL hydrofluoric acid during stirring, react in the reactor at 160°C for 24 hours, and cool to room temperature , after centrifuging and washing three times with ultrapure water and absolute ethanol, vacuum-dry at 50°C; secondly, take 150 mg of the dried solid and mix it with 400 mg of melamine, and grind it into powder; then, put the ground powder into a muffle furnace , the heating rate was 1°C / min, and calcined at 480°C for 5 hours; finally, the calcined powder was cooled to room temperature to obtain Co-MoO 3 / TiO 2 g-C 3 N 4 ;
[0037] The cobalt salt is cobalt sulfate.
Embodiment 2
[0038] Example 2Co-MoO 3 / TiO 2 g-C 3 N 4 preparation of
[0039] First, add 0.8mmol sodium molybdate and 1.0mmol cobalt salt to 5mL tetrabutyl titanate, slowly add 0.65mL hydrofluoric acid during stirring, react in the reactor at 180°C for 21 hours, and cool to room temperature , washed with ultrapure water and absolute ethanol for three times, then vacuum-dried at 50°C; secondly, take 200mg of the dried solid and mix it with 400mg of melamine, and grind it into powder; then, put the ground powder into a muffle furnace , the heating rate is 2°C / min, and calcined at 520°C for 2 hours; finally, the calcined powder is cooled to room temperature to obtain Co-MoO 3 / TiO 2 g-C 3 N 4 ;
[0040] Described cobalt salt is cobalt chloride.
Embodiment 3
[0041] Example 3Co-MoO 3 / TiO 2 g-C 3 N 4 preparation of
[0042] First, add 1.0mmol sodium molybdate and 1.2mmol cobalt salt into 5mL tetrabutyl titanate, slowly add 0.8mL hydrofluoric acid during stirring, react in the reactor at 200°C for 18 hours, and cool to room temperature , after centrifuging and washing with ultrapure water and absolute ethanol three times, vacuum drying at 50°C; secondly, take 250 mg of the dried solid and mix it with 400 mg of melamine, and grind it into powder; then, put the ground powder into a muffle furnace , the heating rate was 3°C / min, and calcined at 560°C for 0.5 hours; finally, the calcined powder was cooled to room temperature to obtain Co-MoO 3 / TiO 2 g-C 3 N 4 ;
[0043] The cobalt salt is cobalt nitrate.
PUM
Property | Measurement | Unit |
---|---|---|
concentration | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com