Acrylic shrinkable fiber and method for production thereof
a shrinkable fiber and acrylic fiber technology, applied in the field of dyeable highly shrinkable acrylic fiber, can solve the problems of difficult suppression of dyeing shrinkage percentage, insufficient dyeing, and high affecting the shrinkage behavior of the fiber, so as to reduce dyeing shrinkage percentage, and reduce dyeing shrinkage. the effect of the percentag
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
production example 1
[0043] A pressure polymerization reactor having an internal volume of 20 L was charged with 200 parts of ion exchange water, 0.9 part of sodium lauryl sulfate, 0.43 part of sulfurous acid, 0.22 part of sodium hydrogensulfite, 0.001 part of iron sulfate, 4.9 parts of acrylonitrile (hereinafter referred to as AN) and 52.5 parts of vinyl chloride (hereinafter referred to as VC), and the internal atmosphere was replaced with nitrogen. The polymerization reactor was adjusted to an internal temperature of 50° C., and charged with 0.035 part of ammonium persulfate as an initiator to initiate polymerization. Polymerization was carried out for a polymerization time of 5 hours and 10 minutes while adding 42.1 parts of AN, 0.5 part of sodium styrenesulfonate (hereinafter referred to as 3S) and 0.23 part of ammonium persulfate.
[0044] Then, the unreacted VC was recovered, and the latex was removed from the polymerization reactor, salted out, treated with heat, filtered, washed with water, dehyd...
production example 2
[0047] The drawn yarn obtained in Production Example 1 was relaxed at 5% at 110° C. Further, a high pile was prepared from the relaxed fiber in the same manner as in Production Example 1.
production example 3
[0048] A pressure polymerization reactor having an internal volume of 20 L was charged with 200 parts of ion exchange water, 1.1 parts of sodium lauryl sulfate, 0.13 part of sulfurous acid, 0.17 part of sodium hydrogensulfate, 0.002 part of iron sulfate, 10.7 parts of acrylonitrile and 4.4 parts of vinylidene chloride, and the internal atmosphere was replaced with nitrogen. The polymerization reactor was adjusted to an internal temperature of 55° C., and charged with 0.012 part of ammonium persulfate as an initiator to initiate polymerization. Polymerization was carried out for a polymerization time of 6 hours and 10 minutes while adding 42.7 parts of acrylonitrile, 41.0 parts of vinylidene chloride, 1.2 parts of sodium styrenesulfonate and 0.135 part of ammonium persulfate. Then, the latex was removed from the polymerization reactor, salted out, treated with heat, filtered, washed with water, dehydrated, and dried to obtain a polymer 3. The polymer 3 was dissolved in acetone to pre...
PUM
Property | Measurement | Unit |
---|---|---|
Temperature | aaaaa | aaaaa |
Temperature | aaaaa | aaaaa |
Temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com