Highly conductive composites for fuel cell flow field plates and bipolar plates

Inactive Publication Date: 2007-07-05
NANOTEK INSTR
View PDF11 Cites 49 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020] This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. In one preferred embodiment, the composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes (this at least 5% is based on the total weight f the composite); (B) thermoplastic at 1 to 49.9% by weight; and (C) thermoset binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, thermoplastic weight % and thermoset binder weight % equals 100% and

Problems solved by technology

The bipolar plate is known to significantly impact the performance, durability, and cost of a fuel cell system.
The bipolar plate, which is typically machined from graphite, is one of the most costly components in a PEM fuel cell.
These methods of fabrication place significant restrictions on the minimum achievable fuel cell thickness due to the machining process, plate permeability, and required mechanical properties.
Further, such plates are expensive due to high machining costs.
The machining of channels into the graphite plate surfaces causes significant tool wear and requires significant processing times.
Such laminated fluid flow field assemblies tend to have higher manufacturing costs than integrated plates, due to the number of manufacturing steps associated with forming and consolidating the separate layers.
They are also prone to delamination due to poor interfacial adhesion and vastly different coefficients of thermal expansion between a stencil layer (typically a metal) and a separator layer.
Because most polymers have extremely low electronic conductivity, excessive conductive fillers have to be incorporated, resulting in an extremely high viscosity of the filled polymer melt or liquid resin and, hence, making it very difficult to process.
It is well-k

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Highly conductive composites for fuel cell flow field plates and bipolar plates
  • Highly conductive composites for fuel cell flow field plates and bipolar plates
  • Highly conductive composites for fuel cell flow field plates and bipolar plates

Examples

Experimental program
Comparison scheme
Effect test

Example

[0034] As shown in FIG. 1 and FIG. 2, a fuel cell typically comprises a pair of fluid distribution plates (also referred to as fluid flow field plates) 21 and 23, which are positioned on opposite sides of a membrane electrode assembly 8. Plate 21, which serves as a fuel distribution plate, is shaped to define fuel flow channels 22 facing towards anode diffuser 10. Channels 22 are designed to uniformly deliver the fuel to the diffuser, which transports the fuel to the anode catalyst layer 16. An input port and an output port (not shown), being in fluid communication with channels 22, may also be provided in flow field plate 21 so that carbon dioxide (in a DMFC) can be withdrawn from channels 22.

[0035] Flow field plate 23 is shaped to include fluid channels 24 for passage of a quantity of gaseous oxygen (or air). An input port and an output port (not shown) are provided in plate 23, which are in fluid communication with channels 24 so that oxygen (or air) can be transported through t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

Description

[0001] The present invention is based on the research results of a project supported by the US Department of Energy SBIR-STTR Program. The US government has certain rights on this invention.FIELD OF THE INVENTION [0002] The present invention provides a highly electrically conductive composite material for use in a fuel cell bipolar plate or flow field plate. BACKGROUND OF THE INVENTION [0003] A proton exchange membrane (PEM) fuel cell is typically composed of a seven-layered structure, including (a) a central PEM electrolyte layer for proton transport; (b) two electro-catalyst layers on the two opposite primary surfaces of the electrolyte membrane; (c) two fuel or gas diffusion electrodes (GDEs, hereinafter also referred to as diffusers) or backing layers stacked on the corresponding electro-catalyst layers (each GDE comprising porous carbon paper or cloth through which reactants and reaction products diffuse in and out of the cell); and (d) two flow field plates (or a bi-polar plat...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H01M8/02H01B1/24C08J5/00
CPCC08J5/04H01B1/24H01M8/0213Y02E60/50H01M8/0226H01M8/0228H01M8/0221Y02P70/50
Inventor JANG, BOR Z.ZHAMU, ARUNASONG, LULU
Owner NANOTEK INSTR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products