Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31 results about "Surgical simulator" patented technology

Combined soft tissue and bone surgical simulator

ActiveUS20140057236A1Determine effectEducational modelsReal-time computer graphicsDisplay device
A surgery simulator includes a physical surrogate surgical interface that represents an interface between a user and a simulated patient in a simulated surgical scenario that involves manipulation of both simulated hard and soft tissue. Sensor(s) sense the user's manipulation of the surrogate surgical interface. A surgical simulation generator generates a real time 3D surgical simulation of the surgical scenario based on the manipulation sensed by the sensor(s). The real time 3D surgical simulation comprises real time simulation state data. The surgical simulation generator renders the real time simulation state data into a real time computer graphics generated video representation of the surgical simulation and provides the real time video representation to a display for real time viewing by the user. The surgical simulation generator simulates effects of the manipulation on both simulated hard tissue and simulated soft tissue of the simulated patient.
Owner:SIMQUEST

Surgical Simulator System

Disclosed is a surgical simulator for teaching, practicing, and evaluating surgical techniques. Such a simulator may comprise a cassette of organs, blood vessels, and tissues that may be disposable. The simulator also comprises a hemodynamic simulator and a frame assembly, the frame assembly providing support for the cassette of organs as well as a fluid conduit through which simulated blood flow from the hemodynamic simulator may be connected to the blood vessels of the organs and related tissues. The hemodynamic simulator provides adjustable and variable pressures to the arteries and veins, as well as variable pulse rates, which can be programmed at settings chosen by an instructor or user.
Owner:EAST TENNESSEE STATE UNIVERSITY

Surgical simulation model generating method, surgical simulation method, and surgical simulator

A surgical simulation model generating method includes: a first process in which a computing unit acquires geometrical information of an organ from a medical image stored in a storage unit, including an image of the organ, and generates volume data for the organ; a second process in which, after the first process, the computing unit forms nodal points by meshing the organ represented by the generated volume data; a third process in which the computing unit generates a simulated membrane that covers the organ represented by the volume data meshed in the second process; and a fourth process in which the computing unit generates a simulated organ by drawing an imaginary line so as to extend from each nodal point formed on a surface of the organ represented by the volume data meshed in the second process in a direction that intersects the simulated membrane and thereby forming a membrane nodal point at a point where the imaginary line intersects the simulated membrane generated in the third process, and by arranging on each imaginary line an imaginary inter-membrane spring that connects between the nodal point formed on the surface of the organ and the membrane nodal point, while also arranging an in-plane spring that connects between adjacent membrane nodal points on the simulated membrane.
Owner:MITSUBISHI PRECISION

Surgical simulation model generating method, surgical simulation method, and surgical simulator

A surgical simulation model generating method includes: a first process in which a computing unit acquires geometrical information of an organ from a medical image stored in a storage unit, including an image of the organ, and generates volume data for the organ; a second process in which, after the first process, the computing unit forms nodal points by meshing the organ represented by the generated volume data; a third process in which the computing unit generates a simulated membrane that covers the organ represented by the volume data meshed in the second process; and a fourth process in which the computing unit generates a simulated organ by drawing an imaginary line so as to extend from each nodal point formed on a surface of the organ represented by the volume data meshed in the second process in a direction that intersects the simulated membrane and thereby forming a membrane nodal point at a point where the imaginary line intersects the simulated membrane generated in the third process, and by arranging on each imaginary line an imaginary inter-membrane spring that connects between the nodal point formed on the surface of the organ and the membrane nodal point, while also arranging an in-plane spring that connects between adjacent membrane nodal points on the simulated membrane.
Owner:MITSUBISHI PRECISION

Surgical Simulator Systems and Methods

A surgical simulator comprising a haptic arm capable of simulating forces generated during surgery from interactions between a surgical tool and tissue operated upon. The simulator further comprises a visual display capable of depicting a three-dimensional image of the simulated surgical tool and a physics-based computer model of the tissue. The haptic arm controls the movement and orientation of the simulated tool in the three-dimensional image, and provides haptic feedback forces to simulate forces experienced during surgery. Methods for simulating surgery and training users of the simulator are also described.
Owner:HELP ME SEE INC

Three-dimensional simulated surgical nail planning method and surgical simulator

The invention is applicable to the field of medical instruments, and provides a planning method for screw placement of three-dimensional simulated operation and a surgical operation simulator. The method comprises the following steps: carrying out three-dimensional modeling according to a received CT image of the spine, thus generating a three-dimensional model; generating drawings of three sectioning planes according to the three-dimensional model; displaying the three-dimensional model and the drawings of the three sectioning planes of the three-dimensional model; adjusting the positions and sectioning directions of the sectioning planes, so that the section condition of the spine can be intuitively observed; determining a screw channel of a screw through the intersecting line of the sectioning planes in two directions; adding the screw in the determined screw channel; and moving the screw in the direction of the screw channel, so that the screw is at the position of the actual operation, and thus the planning for the screw is completed. According to the technical scheme, the planning is concise and convenient, and the screw channel can be accurately planned, so that the screw placement is safe and reliable.
Owner:SHENZHEN XINJUNTE SMART MEDICAL EQUIP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products