Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

77results about How to "Various aberration" patented technology

Optical lens system for taking image

An optical lens system for taking image has, in order from the object side to the image side: a positive first lens element with a convex object-side surface; a negative plastic second lens element with a concave object-side surface; a negative plastic third lens element with a concave object-side surface; a positive fourth lens element with a concave image-side surface; and an aperture stop located between an object to be photographed and the second lens element. The second lens element is provided with at least one aspheric surface, the third lens element is provided with at least one aspheric surface, and the fourth lens element is formed with inflection points. An on-axis distance between the first and second lens elements is T12, a focal length of the optical lens system for taking image is f, they satisfy the relation: (T12 / f)*100>0.7.
Owner:LARGAN PRECISION

Optical lens system for taking image

An optical lens system for taking image comprises, in order from the object side to the image side: a first lens element with positive refractive power; a second lens element with negative refractive power; a third lens element with negative refractive power having a convex object-side surface and a concave image-side surface; a fourth lens element with negative refractive power being provided with at least one aspheric surface. In the optical lens system for taking image, the number of lens elements with refractive power is limited to four. Such arrangements can reduce the volume and the sensitivity of the optical lens system while providing higher resolution.
Owner:LARGAN PRECISION

Image Capture Lens

There is provided an image pickup lens having a 6-element structure which has a small size and a sufficiently lens speed of F / 2 or less and in which various aberrations are corrected favorably. This image pickup lens includes a first lens having a positive refractive power and comprising a convex surface directed to the object side; a second lens having a negative refractive power and comprising a concave surface directed to the image side; a third lens having a positive or negative refractive power; a fourth lens having a positive refractive power; a fifth lens having a positive refractive power and comprising a convex surface directed to the image side; and a sixth lens having a negative refractive power and comprising a concave surface directed to the image side, in this order from the object side, wherein the image side surface of the sixth lens has an aspherical shape and an inflection point at a position other than an intersection point with the optical axis, and the image pickup lens satisfies the following conditional expressions.ν1>50ν2≦30where,ν1 is an Abbe number of the first lens, andν2 is an Abbe number of the second lens.
Owner:KONICA MINOLTA OPTO

Optical lens system for taking image

An optical lens system for taking image comprises, in order from the object side to the image side: an aperture stop; a first lens element with positive refractive power having a convex object-side surface and a convex image-side surface; a plastic second lens element with negative refractive power having a concave object-side surface, a convex image-side surface and at least one aspheric surface; a plastic third lens element with negative refractive power having a convex object-side surface, a concave image-side surface and at least one aspheric surface. The number of the lens elements with refractive power being limited to three. Focal lengths of the optical lens system, the first lens element, the second lens element and the third lens element are f, f1, f2, f3 respectively; Abbe numbers of the first and second lens elements are V1, V2 respectively, an on-axis distance between second and third lens elements is T23, and they satisfy the relations: 0.8<f / f1<1.8; 0<|f / f2|<0.8; 0<|f / f3|<0.7; 20<V1−V2<38; 0.13<T23 / f<0.21.
Owner:LARGAN PRECISION

Projection optical system, exposure apparatus, and exposure method

A catadioptric projection optical system for forming a reduced image of a first surface (R) on a second surface (W) is a relatively compact projection optical system having excellent imaging performance as well corrected for various aberrations, such as chromatic aberration and curvature of field, and being capable of securing a large effective image-side numerical aperture while suitably suppressing reflection loss on optical surfaces. The projection optical system comprises at least two reflecting mirrors (CM1, CM2), and a boundary lens (Lb) whose surface on the first surface side has a positive refracting power, and an optical path between the boundary lens and the second surface is filled with a medium (Lm) having a refractive index larger than 1.1. Every transmitting member and every reflecting member with a refracting power forming the projection optical system are arranged along a single optical axis (AX) and the projection optical system has an effective imaging area of a predetermined shape not including the optical axis.
Owner:NIKON CORP

Image capturing lens assembly and image capturing device

An image capturing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element with refractive power has two surfaces being both aspheric, wherein at least one of the surfaces of the fifth lens element has at least one inflection point thereon. The sixth lens element with positive refractive power has an image-side surface being convex in a paraxial region thereof, wherein the surfaces of the sixth lens element are both aspheric.
Owner:LARGAN PRECISION

Image Pickup Lens, Image Pickup Device Provided with Image Pickup Lens, and Mobile Terminal Provided with Image Pickup Device

Provided is an image pickup lens that forms an image on an image pickup element with light from a subject. In the image pickup lens, a lens that is disposed on an image pickup element side is fixed in position, and a focusing lens group having a plurality of lenses including a lens closest to the subject is moved in an optical axis direction, thereby performing focusing.
Owner:KONICA MINOLTA OPTO

Optical system and optical apparatus having the same

At least one exemplary embodiment is directed to an optical system which includes a plurality of refractive optical elements arranged substantially symmetrically with respect to an aperture-stop. Furthermore the optical system comprises a refractive optical element being constituted by a solid material. An Abbe number νd of the solid material and a partial dispersion ratio θgF of the solid material can satisfy the following conditions:θgF−(−1.665×10−7·νd3+5.213×10−5·νd2−5.656×10−3·νd+0.755)>0,θgF−(−1.665×10−7·νd3+5.213×10−5·νd2−5.656×10−3·νd+1.011)<0.
Owner:CANON KK

Projection optical system, exposure apparatus, and exposure method

A catadioptric projection optical system for forming a reduced image of a first surface (R) on a second surface (W) is a relatively compact projection optical system having excellent imaging performance as well corrected for various aberrations, such as chromatic aberration and curvature of field, and being capable of securing a large effective image-side numerical aperture while suitably suppressing reflection loss on optical surfaces. The projection optical system comprises at least two reflecting mirrors (CM1, CM2), and a boundary lens (Lb) whose surface on the first surface side has a positive refracting power, and an optical path between the boundary lens and the second surface is filled with a medium (Lm) having a refractive index larger than 1.1. Every transmitting member and every reflecting member with a refracting power forming the projection optical system are arranged along a single optical axis (AX) and the projection optical system has an effective imaging area of a predetermined shape not including the optical axis.
Owner:NIKON CORP

Image capturing lens, optical apparatus having same, and method for manufacturing image-capturing lens

An image-capturing lens has, in order from an object, an object side lens group G1 and an image side lens group G2 which is disposed next to the object side lens group G1 with an air space, and focusing is performed from a distant object to a close object by moving at least a part of the image side lens group G2 along an optical axis as a focusing lens group, and image stabilization is performed by moving at least a part of the image side lens group G2 as a shift lens group so as to have components roughly orthogonal to the optical axis.
Owner:NIKON CORP

Imaging optical lens assembly, image capturing apparatus and electronic device

ActiveUS20170168264A1Favorably enlargeImprove coordinationOptical elementsElectronPhysics
The present disclosure provides an imaging optical lens assembly, including, in order from an object side to an image side: a first lens element with negative refractive power having an object-side surface being concave in a paraxial region, a second lens element with positive refractive power, a third lens element with negative refractive power, a fourth lens element with positive refractive power, and a fifth lens element with negative refractive power having an image-side surface being concave in a paraxial region and at least one convex shape in an off-axial region on the image-side surface, wherein the imaging optical lens assembly has a total of five lens elements.
Owner:LARGAN PRECISION

Imaging lens and imaging apparatus

ActiveUS20140240851A1Easy to correctLoss of telecentric propertyLensOphthalmologyRefractive index
An imaging lens includes: a first lens group; an aperture stop; and a second lens group having a positive refractive power, in this order from an object side. The first lens group includes a negative first lens provided most toward the object side. The second lens group includes a positive lens, provided most toward an imaging surface, and a negative lens having a concave surface and an aspherical surface at least toward the object side. The following Conditional Formulae are satisfied:0.03<(|Sagsp1|−|Sagas1|) / Re1<0.35; and1.819≦NdAB wherein Sagsp1 is the sag of a reference spherical surface at the edge of the effective diameter of the object side surface of the negative lens, Sagas1 is the sag of the aspherical surface of the lens, Re1 is the effective diameter of the object side surface of the lens, and NdAB is the average refractive index of the positive lens and the negative lens.
Owner:FUJIFILM CORP

Immersion microscope objective lens

An immersion microscope objective lens includes, in the following order from an object side to an image side, a first lens group having positive refractive power as a whole, including a first lens component composed of a first meniscus lens and a second meniscus lens cemented to each other with their concave surfaces facing the object side, a second lens composed of a single lens having positive refractive power and a third lens composed of a negative lens and a positive lens cemented to each other, a second lens group having positive refractive power as a whole, including a fourth lens component composed of a negative lens and a positive lens cemented to each other, and a third lens group having a negative refractive power as a whole. Predetermined conditions are satisfied.
Owner:NIKON CORP

Optical pickup and optical information processing apparatus with light sources of three different wavelengths

InactiveUS7142497B2Reduced beam diameterEffectively controlled and reducedIntegrated optical head arrangementsOptical beam sourcesOptical pickupOptical recording
An optical pickup apparatus for performing recording, reproduction and deletion of information onto each of three types of optical recording mediums including light sources of a blue wavelength zone, light sources of a red wavelength zone and light sources of an infrared wavelength zone. The optical pickup apparatus also has a single object lens which condenses a light from any of the light sources and a single aberration correction device disposed in a common light path between each of the light sources and the object lens.
Owner:RICOH KK

Zoom Lens and Imaging Apparatus

Provided are a zoom lens and an imaging apparatus using the zoom lens, the zoom lens being suited for achieving compactness without increasing the number of lenses and being capable of implementing motion blur compensation. The zoom lens includes lenses arranged in order from an object side into a first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, a fourth lens group having positive refractive power, and a fifth lens group having positive refractive power. In the event of a shift of a lens position mode from a wide angle end mode to a telephoto end mode, the first lens group is fixed along an optical axis direction, the second lens group moves to an image side, the third lens group is fixed along the optical axis direction, the fourth lens group compensates for a fluctuation in an image plane position due to the shift of the second lens group, and concurrently moves along the optical axis direction in a close-distance focusing event, and the fifth lens group is fixed along the optical axis direction. An aperture diaphragm is disposed in the vicinity of the third lens group. The fifth lens group includes a negative sub lens group having negative refractive power and a positive sub lens group having a positive refractive power, wherein the image can be shifted in conjunction with a shift of the positive sub lens group in a direction substantially perpendicular to the optical axis. The zoom lens satisfies conditional equation (1) given as 0.6<f5p / Da<1.4, where f5p is a focal distance of the positive sub lens group disposed in the fifth lens group, and Da is a length extending along the optical axis to a paraxial image position from a most-imagewise surface of the positive sub lens group disposed in the fifth lens group.
Owner:SONY CORP

Zoom lens system

Providing a zoom lens system having excellently correcting various aberrations with accomplishing to be compact, lightweight, and slim upon being retracted. The system is composed of, in order from an object, a first group having negative refractive power, and a second group having positive refractive power. Upon zooming from a wide-angle end state to a telephoto end state, a distance between the first group and the second group varies. The first group is composed of two lens elements which are, in order from the object, a negative lens having a concave surface facing an image, and a positive lens. The second group consists of three lens elements or less and includes, in order from the object, a positive lens, an aperture stop for defining an f-number, and a negative lens component including a negative lens and disposed to the image side of the aperture stop. Given conditions are satisfied.
Owner:NIKON CORP

Inner focus lens, interchangeable lens apparatus and camera system

An inner focus lens, in order from an object side to an image side, comprising: a first lens unit having positive optical power; a second lens unit having negative optical power; and a third lens unit having positive optical power, wherein the second lens unit is moved along an optical axis so that focusing from an infinite-distance object side to a short-distance object side is achieved, the first lens unit includes a bi-convex air lens, and the following conditions: 0.65<|f2 / f|<5.00 and 0.5<f23 / f1<9.0 (f2: a focal length of the second lens unit, f and f23: a focal length of the entire system and a composite focal length of the second and third lens units in an infinity in-focus condition, f1: a focal length of the first lens unit) are satisfied; an interchangeable lens apparatus; and a camera system are provided.
Owner:PANASONIC CORP

Optical Lens System for Taking Image

An optical lens system for taking image comprises, in order from the object side to the image side: an aperture stop; a first lens element with positive refractive power having a convex object-side surface and a convex image-side surface; a plastic second lens element with negative refractive power having a concave object-side surface, a convex image-side surface and at least one aspheric surface; a plastic third lens element with negative refractive power having a convex object-side surface, a concave image-side surface and at least one aspheric surface. The number of the lens elements with refractive power being limited to three. Focal lengths of the optical lens system, the first lens element, the second lens element and the third lens element are f, f1, f2, f3 respectively; Abbe numbers of the first and second lens elements are V1, V2 respectively, an on-axis distance between second and third lens elements is T23, and they satisfy the relations: 0.8<f / f1<1.8; 0<|f / f2|<0.8; 0<|f / f3|<0.7; 20<V1−V2<38; 0.13<T23 / f<0.21.
Owner:LARGAN PRECISION

Immersion microscope objective lens

An immersion microscope objective lens includes, in the following order from an object side to an image side, a first lens group having positive refractive power as a whole, including a first lens component composed of a first meniscus lens and a second meniscus lens cemented to each other with their concave surfaces facing the object side, a second lens composed of a single lens having positive refractive power and a third lens composed of a negative lens and a positive lens cemented to each other, a second lens group having positive refractive power as a whole, including a fourth lens component composed of a negative lens and a positive lens cemented to each other, and a third lens group having a negative refractive power as a whole. Predetermined conditions are satisfied.
Owner:NIKON CORP

Subminiature imaging optical system

A subminiature imaging optical system includes a first lens including a first lens part having a convex object-side surface, a second lens part having an object-side surface in contact with an image-side surface of the first lens part, and a third lens part having an object-side surface in contact with an image-side surface of the second lens part and a concave image-side surface, about the optical axis; and a second lens including a fourth lens part having an object-side surface with a convex center and a concave peripheral portion about the optical axis, a fifth lens part having an object-side surface in contact with an image-side surface of the fourth lens part, and a sixth lens part having an object-side surface in contact with an image-side surface of the fifth lens part, and an image-side surface with a concave center and a convex peripheral portion about the optical axis.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Optical system and image pickup apparatus using the same

An optical system includes a first lens unit having a negative refractive power and a second lens unit having a positive refractive power. The second lens unit includes a front lens unit, a stop, and a rear lens unit. The front lens unit includes a biconvex positive lens located closest to the image side. A back focus during focusing on an infinitely-distant object point (BF), a focal length of the entire optical system (f), a focal length of the positive lens of the front lens unit located closest to the image side (fp), a focal length of the front lens unit (f2a), a refractive power of a surface of the rear lens unit located closest to the object side (φf), and a refractive power of the entire optical system (φ) satisfy the following conditions:1.0<BF / f<3.00.1<fp / f2a<0.50.7<|φf / φ|<1.5.
Owner:CANON KK

Optical system and optical apparatus including the same

An optical system in which a maximum value of a height from an optical axis of a paraxial marginal ray closer to an expanded side than a point of intersection between an optical axis and a paraxial chief ray, includes a lens unit Lr including at least one refractive optical element Gn of a negative refractive power. In the optical system, νd (Gn) as an Abbe number of a material of the refractive optical element Gn, θgF (Gn) as a partial dispersion ratio regarding g and F-lines, FGn as a focal lengths of the refractive optical element Gn, and Fr as focal lengths of the lens unit Lr are set appropriately.
Owner:CANON KK

Imaging optical system and imaging device

An imaging optical system comprises a first lens group composed of a negative single lens, a second lens group composed of a positive lens element and a negative lens element attached together, an aperture stop, a third lens group composed of a positive lens element and a negative lens element attached together, and a fourth lens group composed of a negative single lens, in this order from an object side. Expressions 0.37<hF / IH<0.5 and 0.37<hR / IH<0.5 are satisfied where “IH” denotes a maximum image height on an image plane, “hF” denotes an incident height of a principal ray, directed to a position of the maximum image height on the image plane, at its entrance into the first lens group, and “hR” denotes an exit height of the principal ray at its exit from the fourth lens group.
Owner:FUJIFILM CORP

Optical Lens System for Taking Image

An optical lens system for taking image comprises, in order from the object side to the image side: a first lens element with positive refractive power has a convex object-side surface; a plastic second lens element with negative refractive power has a concave object-side surface and is provided with at least one aspheric surface; a plastic third lens element with negative refractive power has a concave object-side surface and is provided with at least one aspheric surface; a fourth lens element with positive refractive power has a concave image-side surface and is formed with inflection points; and an aperture stop is located between an object to be photographed and the second lens element. An on-axis distance between the first and second lens elements is T12, a focal length of the optical lens system for taking image is f, they satisfy the relation: (T12 / f)*100>0.7.
Owner:LARGAN PRECISION

Projection lens and projection type display device using the same

ActiveUS20090109543A1Good aberration correcting functionWide viewing angleLensOptical axisDisplay device
A projection lens includes, in order form a magnification side: a first lens group having negative refractive power; and a second lens group having positive refractive power. An aspheric lens is arranged on the most magnification side of the first lens group. The conditional expressions 3<Bf / f and 0.4<H / L are satisfied, where f denotes a focal length of the projection lens, Bf denotes an air-converted back focal length, H denotes a height of a principal ray at the maximum angle of view on a plane which is orthogonal to an optical axis and which passes through point A, and L denotes a length from the point A to a vertex of a lens surface on the most reduction side on the optical axis. Here, the point A is a vertex of a lens surface on the most magnification side on the optical axis.
Owner:FUJI PHOTO OPTICAL CO LTD

Zoom lens system

InactiveUS20090097131A1Suppress production of various type of aberrationAberration correctionOptical elementsMeniscusZoom lens
A zoom lens system consists, in order from an object side to an image-forming side, of a first negative lens group G1, a second positive lens group G2, and a third positive lens group G3. The first lens group G1 consists of one negative lens and one positive lens, the second lens group G2 consists of a cemented lens composed of a positive lens and a negative lens, and one meniscus lens that is concave on the image-forming side, the third lens group G3 consists of a single positive lens, and a combined focal length f2 of the second lens group, a focal length Lf23 of the meniscus lens of the second lens group, a combined focal length fw of the zoom lens system at a wide angle end, a combined focal length f3 of the third lens group, a radius of curvature Ro of an object side surface of the positive lens in the cemented lens, and a radius of curvature Ri of an image-forming side surface of the positive lens in the cemented lens satisfy the following conditions.0<|f2 / Lf23|<0.3−2.0<Ri / Ro<−1.00.25<fw / f3<0.45
Owner:NITTO OPTICAL CO LTD

Optical pickup and optical information processing apparatus

An optical pickup performing recording, reproduction and deletion of information onto an optical recording medium, said optical pickup includes light sources of blue wavelength zone, red wavelength zone and infrared wavelength zone; a single object lens which condenses a light from any of the light sources; and a single aberration correction device disposed in a common light path between each of the light sources and the object lens.
Owner:RICOH KK

Variable-magnification optical system and image taking apparatus

A variable-magnification optical system has a plurality of lens groups that image a light beam from the object side on an image sensor, an optical aperture stop that intercepts part of the light beam heading for the image sensor, and a reflective mirror that changes the optical axis of the light beam of which part has been intercepted by the optical aperture stop. The plurality of lens groups include at least lens groups arranged in a positive-negative-positive-positive optical power arrangement, and at least two of the lens groups are moved for zooming from the wide-angle end to the telephoto end. The variable-magnification optical system fulfills a prescribed conditional formula.
Owner:KONICA MINOLTA PHOTO IMAGING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products