Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Photoresist composition for deep ultraviolet lithography

Inactive Publication Date: 2004-08-26
AZ ELECTRONICS MATERIALS USA CORP
View PDF0 Cites 38 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012] The inventors of this application have found that, surprisingly, aliphatic cyclic polymers can have their fluoroalcohol moieties easily functionalized with an alkyloxycarbonylalkyl(AOCA) group and that this group provides these types of resins with surprising advantages for photoresist applications.
[0015] The present inventors have found that when the AOCA group is used to protect fluoroalcohol moieties it is unexpectedly found to possess higher stability towards thermal cleavage than the t-BOC group or the MOM protecting group. Generally, from a photoresist standpoint, such an increase in thermal stability of the protected fluoroalcohol imparted by use of AOCA, particularly the BOCME group, is desirable as it increases thermal processing latitude and shelf life. Also, from a synthetic standpoint, such a increase in thermal stability is desirable as it helps to increase the yield of protected fluoroalcohol polymers, whether they are made by protection of pre-formed fluoroalcohol polymers or through polymerization of monomers containing a fluoroalcohol bearing polymer protected by AOCA groups. Surprisingly, despite its high thermal stability, the BOCME protecting group, in particular, can be easily removed by photoreleased acid in the exposed resist areas, requiring standard post-exposure bake temperatures to affect cleavage (1100 C-130.degree. C.). It has also been found by the applicants that the functionalization of perfluoroalcohols with AOCA groups results in higher contrast photoresist systems than using tert-butyl carboxylates of photoresist resins containing norbornene-5-carboxylic acid repeat units.

Problems solved by technology

U.S. Pat. No. 5,843,624 discloses polymers for photoresist that are obtained by free radical polymerization of maleic anhydride and unsaturated cyclic monomers, but the presence of maleic anhydride makes these polymers insufficiently transparent at 157 nm.
These materials give acceptable absorbance at 157 nm, but due to their lower alicyclic content as compared to the fluoro-norbornene polymer, have lower plasma etch resistance.
However, an important limitation to any of these approaches is the availability of a suitable protecting group for fluoroalcohols.
These protecting groups on the perfluoroalcohol moiety are relatively unstable and often undergo partial or complete deprotection during polymerization.
The difficulty in protecting the fluoroalcohol functionality, and the resultant loss of the unexposed photoresist film, has meant that the acid labile functionality can often only be attached to either a methacrylate, acrylate, or norbornenecarboxylic acid repeat unit (which are deleterious to transparency at 157 nm) or to a dissolution inhibitor additive (WO 00 / 67072, WO 00 / 17712 Hoang V. Tran et al Macromolecules 35, 6539, 2002).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Photoresist composition for deep ultraviolet lithography
  • Photoresist composition for deep ultraviolet lithography
  • Photoresist composition for deep ultraviolet lithography

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0090] Table 1 shows the TGA onset of deprotection of MOM and t-boc compared to that found for the deprotection with the BOCME group on representative examples of polymers (FIG. 6) belonging to the two classes of cyclic fluoroalcohol bearing polymer described earlier.

1TABLE 1 Onset of deprotection of polymers I and II with various protecting groups* Protecting Polymer Onset of group (% protection) Deprotection (.degree. C.) BOCME II (30%) 174 BOCME I (30%) 206 T-BOC I (30%) 120 MOM II (20%) <100 *Data gathered at 20.degree. C. / min heating rate

[0091] Table 1 clearly shows that polymers with the BOCME group thermally deprotect at a higher temperature than the same polymer with the t-boc and MOM groups

example 2

[0092] The contrasts of resists were measured by coating them at a thickness of 1350 A (Angstroms) and after exposure using an open frame reticle baking and developing the film and measuring the normalized thickness as a function of dose. The contrast is taken from the slope of plot of normalized thickness versus log(dose). Processing conditions were as follows:

[0093] The exposures were done an Exitech 157 nm small field (1.5.sub.--1.5 mm2) mini-stepper (0.6 NA) using open frame exposure reticle at International SEMATECH in Austin. An FSI Polaris 2000 track was used to coat, bake, and develop the resist films. A Prometrix interferometer was used to measure resist thickness.

[0094] The photoresist formulations preparation and resultant contrasts are as follows:

[0095] By mixing the following dry ingredients poly(tert-Butyl Bicyclo[2.2.1]hept-5-ene-2-carboxylate-co-1,1,1-trifluoro-2-(trifluoromet-hyl)pent-4-en-2-3-(Bicyclo[2.2.1]hept-5-en-2-yl)-1,1,1-trifluoro-2-(triflu-oromethyl)propan...

example 3

Synthesis of BOCME Protected Poly(3-(bicyclo[2.2.1]hept-5-en-2-yl)-1,1,1-t-rifluoro-2-(trifluoromethyl)propan-2-ol) Using t-BuOK

[0096] Poly(3-(bicyclo[2.2.1]hept-5-en-2-yl)-1,1,1-trifluoro-2-(trifluorom-ethyl)propan-2-ol) (PBHTTP) (4.0 g, 14.59 mmol) was dissolved into 15 ml of tetrahydrofuran (THF), and solid t-BuOK (0.491 g, 4.38 mmol) was added while stirring. After 30 minutes, t-butyl bromoacetate (1.71 g, 8.76 mmol) was added to this reaction solution which was stirred for 16 hours at 25.degree. C. After removal of the solvent using a rotary evaporator, the resultant residue was dissolved in 20 ml of methanol (MeOH) containing 1.0 g of concentrated HCl. This solution was then precipitated in 180 ml of water-methanol (8:1). The polymer was isolated by filtration and further purified by dissolving it into MeOH and re-precipitating it in the water-methanol mixture. The final precipitate was then filtered, washed with water and dried overnight under vacuum (25" Hg) at 55.degree. C....

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Wavelengthaaaaaaaaaa
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

The present invention relates to a photoresist composition comprising a photoacid generator and at least one novel polymer comprising at least one unit as described by structure 1, where, either (i) R1 is an aliphatic cyclic unit of a polymer, R2 is selected from H, F, (C1-C8)alkyl, (C1-C8)fluoroalkyl, cycloalkyl, cyclofluoroalkyl, and (CR3R4)p(CO)OR5, and Rf is selected from F, H, (C1-C8)alkyl, or a fully or partially fluorinated alkyl, and cyclofluoroalkyl, or (ii) R1 and R2 combine to form an aliphatic cyclic unit of a polymer, and Rf is selected from F, H, (C1-C8)alkyl and a fully or partially fluorinated alkyl, and cyclofluoroalkyl, or (ii) R1 and Rf combine to form an aliphatic cyclic unit of a polymer, and R2 is selected from H, F, (C1-C8)alkyl, (C1-C8)fluoroalkyl, cycloalkyl, cyclofluoroalkyl, and (CR3R4)p(CO)OR5; and, R3 and R4 are independently H, F, (C1-C8)alkyl, (C1-C8)fluoroalkyl, cycloalkyl, cyclofluoroalkyl, (CR3R4)p(CO)OR5, R3 and R4 may combine to form an alkylspirocyclic or a fluoroalkylspirocyclic group, X is selected from (C1-C8)alkylene, (C1-C8)fluoroalkylene, O(C1-C8)alkylene, O(C1-C8)fluoroalkylene, cycloalkyl and fluorinatedcycloalkyl, R5 is H or an acid labile group, m=0-1, and p=1-4. The invention also relates to a process for imaging the photoresist composition of the present invention.

Description

[0001] The present invention relates to a novel photoresist composition that is particularly useful in the field of microlithography, and especially useful for imaging positive patterns in the production of semiconductor devices. The photoresist resin composition comprises a polymer or a mixture of polymers in which fluoro-alcohol moieties on an aliphatic cyclic fluorinated polymer are fully or partially protected with an alkyloxycarbonylalkyl (AOCA) protecting group, a photoactive component, and optionally, a base additive. The resin of the novel photoresist has high transparency in the deep ultraviolet (uv) region, and such a composition is especially useful for exposure at 193 nanometers (nm) and 157 nm. The invention further relates to a process for imaging the novel photoresist.BACKGROUND OF INVENTION[0002] Photoresist compositions are used in microlithography processes for making miniaturized electronic components such as in the fabrication of computer chips and integrated cir...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G03F7/004G03F7/039
CPCG03F7/0046G03F7/0395Y10S430/111Y10S430/108Y10S430/106
Inventor DAMMEL, RALPH R.SAKAMURI, RAJHOULIHAN, FRANK
Owner AZ ELECTRONICS MATERIALS USA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products