CARBON DIOXIDE DISSOLUTION AND C4+nM STATE CARBON RECYCLING DEVICE AND METHOD

a carbon recycling and carbon dioxide technology, applied in the direction of electrochemical generators, fuel cells, electrical appliances, etc., can solve the problems of reducing greenhouse gases, reducing carbon dioxide, and reducing efficiency, so as to reduce carbon, reduce carbon, and reduce carbon

Inactive Publication Date: 2010-03-25
CHEN SHU CHIN +2
View PDF1 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]The continuous supplementary reaction between the hydrogen fuel cell and the carbon dioxide pole taken place at the voltage and the current of the external dual electron circuit can be recycled and used easily for supporting the consumption for other applications, and the process for four protons (H+) and oxygen (O2) to be reacted to form water (H2O) will release heat energy which can be used for different applications through a thermal conducting material, and the heat energy is recycled and conducted to a carbon dioxide nanometer (nM) reacting pole, and thus greatly reducing the power consumption required when the temperature of the carbon dioxide nanometer (nM) reacting pole is increased. In other words, if the output capability of a dual-loop fuel cell drops to a rated 80%, it shows that the performance of the carbon dioxide pole (CO2 pole) drops because the nanopores are filled up with the C4+ nM state carbon. It is necessary to have a second-stage chemical reaction which is the reduction process of the C4+ nM state carbon, wherein a static charge generator is used for returning the energy of the four electrons (4e−) to the reverse reaction process of the C4+ nM state carbon, and its chemical reaction equation is given below:C4− nM+4e−↓→C+∇nM.
[0015]Compared with the natural mechanism, the present invention cannot imitate the mechanism of photosynthesis to achieve the effect of fixing the carbon, but the invention can use the mechanism of photosynthesis to break the electron bonds of the carbon dioxide (CO2). Therefore, the invention relates to a carbon dioxide (CO2) resolve / decompose method and a reduction method of a non-biological mechanism, and the entire operation process does not involve any pollution, but gives the beneficial effect of recycled chemical energy and nanocarbon, which is an excellent solution for the greenhouse gases.
[0016]Since carbon dioxide comes with a strong bond, the methods in the past may be able to cut off the bonding force of carbon dioxide temporarily, the bond is resumed immediately afterward, and this is a difficult problem and a challenge to all experts in this field. If the materials adopted by these experts only have the characteristic of compensating the electron bond, the carbon dioxide cannot be actually decomposed into carbon and oxygen, because when the bonding force between carbon and oxygen is weakened, and no other force substitutes the original bonding force between carbon and oxygen, such as providing a new bond between proton (H+) and oxygen, the extra free electrons will be consumed, and the quantum state of the C4+ nM state carbon is situated at the base state temporarily, and oxygen will be combined with carbon in the C4+ nM state carbon immediately to form the stable carbon dioxide. With the compensation characteristic of the electron bond of the nanometer structure, the temperature change control characteristic and the flexibly changing mechanical characteristic in accordance with the present invention, the decomposition and recycle of carbon dioxide can be achieved. The photon resolve / decompose mechanism of the invention with non-biological features for industrial mass production is definitely a feasible solution for greenhouse gases. We can change the temperature of the nanometer structure easily to spread open the nano tangle tentacles filled with C4+ nM state carbon to successfully release carbon from the C4+ nM state carbon to for particulate carbon, so that the carbon dioxide pole (CO2 pole) of the nanometer structure resumes its original shape to facilitate a reuse. The key point is to develop a carbon dioxide decomposition and recycle device in an industrial mass production scale without the limitations of volume and capacity. Any close space can be used for an installation, and the installed product can be as large as a football field or as small as a toaster.
[0018](1) A plurality of large carbon dioxide decomposition and recycle devices installed according to the present invention should be multi-linked devices and operating parallel in alternately. The devices can be installed at an exhaust outlet of a thermal power plant, a steel plant or a cement plant for removing electric charges and dusts, and rinsing the exhaust of high-concentration carbon dioxide, and effectively decomposing and recycling carbon dioxide into carbon and pure water. The invention provides a tool for protecting the environment and attempting to minimize carbon to zero. The key point of this application of the carbon dioxide decomposition and recycle device resides on the decomposition and recycle of carbon dioxide into carbon and pure water, and it becomes a beneficial tool for a certain company for protecting environment and reducing carbon. The buying party of carbon becomes a selling party who sells the reduced carbon quota to the industries such as airline, transportation, gas, and oil extraction industries that cannot reduce carbon technically. In addition to making additional profits, these companies also protect the environment. Of course, we cannot reduce carbon dioxide and greenhouse gases in the atmosphere to 280 ppm. of 1800 immediately, but we can effectively control carbon dioxide and greenhouse gases from rising. At present, our earth already has excessive carbon dioxide and greenhouse gases. Although the forests and coral in seas on earth can clean up the greenhouse gases, it may take a couple of centuries before a healthy earth is recovered. Without the assistance of the carbon dioxide decomposition and recycle device in accordance with the present invention, the construction and mission of reducing carbon dioxide and greenhouse gases on earth will be more difficult and time-consuming or require tens or hundreds of times of costs.
[0019](2) A small carbon dioxide decomposition and recycle device in accordance with the present invention is installed in a manned spaceship, and uses the high-energy photons of the sunlight for electrolyzing water into hydrogen (H2) and oxygen (O2) as a fuel source of a CO2 fuel cell. The invention carries on a constant filter cycle in a spaceship cabin for producing water used for the electrolysis by the optoelectric effect of the sunlight in order to prepare hydrogen and oxygen, wherein oxygen is provided for the respiration of astronauts, and hydrogen is provided for the use as a fuel for a hydrogen pole of the carbon dioxide decompose device (CO2 fuel cell), and the concentration of carbon dioxide in the spaceship cabin will remain low due to the continuous operation of the carbon dioxide decomposition and recycle device. The carbon dioxide decomposition and recycle device of the present invention is primarily used for generating and supplying electric power to the spaceship cabin, and controlling the concentration of carbon dioxide, and both are equally important. Although the concentration of carbon dioxide in the spaceship cabin may not be too high, the device of the invention relates to operations of a constant cycle, thus, controlling the concentration of carbon dioxide in the spaceship cabin within a normal standard value effectively and naturally avoid accidents and risks during outer space missions. In other words, the carbon dioxide absorbing device in the Apollo 13 spaceship cabin prevents the recurrence of having a carbon dioxide concentration approaching a critical limit encountered by the astronauts, and also gives the additional benefit of a fuel cell.
[0021](4) The carbon (C) recycled by the carbon dioxide decomposition and recycle device is nano-scale pure particulate carbon without any impurity, and the scope of its application is extensive, particularly used as a raw material for man-made diamonds. This application can greatly enhance the hit rate of the crystallization of man-made diamonds, lower the manufacturing cost, and improve the quality. The recycled nanocarbon can be used for manufacturing high-end carbon fibers as a premium material for manufacturing aircrafts or nanocarbon tubes or nanocarbon meshes used for fuel cell poles. The nanocarbon recycled by this device overcomes the yield rate issue of the carbon wafer fabrication process to expedite the development of the next-generation carbon wafer products and substitutes the current silicon wafer process that almost approaches the upper limit of Moore's Law and allows future information products produced by the carbon manufacturing process to have the light, handy, power-saving and quick functions.

Problems solved by technology

Although the prior art can temporarily absorb and restrict carbon dioxide in a certain specific material sodium hydroxide (NaOH) with a reaction formula of NaOH+CO2→NaHCO3, such reaction cannot continue when the absorption of carbon dioxide in the material is saturated, and this situation is similar to the one encountered by the American spaceship Apollo 13.
Thus, the use of a specific material to absorb carbon dioxide can process a certain concentration of carbon dioxide, but such application is not valuable to the construction of reducing a large quantity of carbon dioxide or other greenhouse gases.
Recently, the photosynthesis by cyanobacteria is attempted to deal with the high concentration of carbon dioxide discharged by factories, but cyanobacteria provides a limited efficiency due to the effects of sunlight, temperature and photosynthesis, and this arrangement requires tremendous land area, and thus becoming a bottleneck of its implementation, and it is definitely not the best way of reducing greenhouse gases.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • CARBON DIOXIDE DISSOLUTION AND C4+nM STATE CARBON RECYCLING DEVICE AND METHOD
  • CARBON DIOXIDE DISSOLUTION AND C4+nM STATE CARBON RECYCLING DEVICE AND METHOD
  • CARBON DIOXIDE DISSOLUTION AND C4+nM STATE CARBON RECYCLING DEVICE AND METHOD

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0036]The present invention discloses a carbon dioxide decomposition and recycle device (CO2 fuel cell ) using a traditional hydrogen fuel cell (H2 Fuel Cell) as an anode structure for catalyzing four equivalences of protons (4H+) and four equivalences of electrons (4e−) produced by two hydrogen molecules (2H2), and a carbon dioxide catalytic pole (CO2 pole) is installed at an external side of a cathode of the fuel cell originally provides an interface of oxygen and serves as a generator of oxygen molecules (O2). High-energy photons produced by the ultraviolet lamp is provides a quantum action force for breaking the bonding force between carbon and oxygen of carbon dioxide molecules and serves as a decomposition and catalysis driving force, such that carbon dioxide (CO2) can be decomposed into C4+ nM state carbon and oxygen molecule (O2) to produce four equivalences of electrons (4e−), and the oxygen molecule (O2) decomposed from carbon dioxide (CO2) is in line with a hydrogen pole ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

With this technology, we build a nano-material which is structured as a tree with the branches and leaves being tentacles. When the temperature is between 150° C. and 180° C., those tentacles will shape themselves into nanometer holes to catch ion.The chemical equation: uv+CO2+ΔnM+2H2+4e−↑→C+2H2O+∇nM+4e−↓.Those two chemical equations have one common subject, that's they both take high energy light particles to break the electron bond between carbon and oxygen, thus, the invertor can reduce the greenhouse gases (CO2) in the atmosphere or recycle carbon from industrial emissions.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]In the past two centuries, petrochemical energy have been used extensively to support industrial and technological developments, and some people called the civilization in these two centuries as the civilization of carbon or the era of carbon. The extensive use of petrochemical energy causes an adverse effect of producing increasingly large quantity of greenhouse gases including carbon dioxide in the atmosphere. The production of greenhouse gases is increased from 280 ppm. (in 1800) to approximately 380 ppm (at present). If we continue using petrochemical energy without controlling the production of greenhouse gases including carbon dioxide, the concentration of greenhouse gases including carbon dioxide will exceed 500 ppm and up to a dangerous level by the middle of this century (around 2050), and the world cannot bear such a high level of greenhouse gases.[0003]According to reports from media, experts from major membe...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H01M8/04
CPCH01M8/0668Y02E60/50H01M2008/1095H01M8/22
Inventor CHEN, SHU-CHINCHEN, TZU-YULIN, PI-SUNG
Owner CHEN SHU CHIN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products