Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

40 results about "Supersampling" patented technology

Supersampling is a spatial anti-aliasing method, i.e. a method used to remove aliasing (jagged and pixelated edges, colloquially known as "jaggies") from images rendered in computer games or other computer programs that generate imagery. Aliasing occurs because unlike real-world objects, which have continuous smooth curves and lines, a computer screen shows the viewer a large number of small squares. These pixels all have the same size, and each one has a single color. A line can only be shown as a collection of pixels, and therefore appears jagged unless it is perfectly horizontal or vertical. The aim of supersampling is to reduce this effect. Color samples are taken at several instances inside the pixel (not just at the center as normal), and an average color value is calculated. This is achieved by rendering the image at a much higher resolution than the one being displayed, then shrinking it to the desired size, using the extra pixels for calculation. The result is a downsampled image with smoother transitions from one line of pixels to another along the edges of objects.

Method and apparatus for anti-aliasing in a graphics system

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The system achieves highly efficient full-scene anti-aliasing by implementing a programmable-location super-sampling arrangement and using a selectable-weight vertical-pixel support area blending filter. For a 2×2 pixel group (quad), the locations of three samples within each super-sampled pixel are individually selectable. A twelve-bit multi-sample coverage mask is used to determine which of twelve samples within a pixel quad are enabled based on the portions of each pixel occupied by a primitive fragment and any pre-computed z-buffering. Each super-sampled pixel is filtered during a copy-out operation from a local memory to an external frame buffer using a pixel blending filter arrangement that combines seven samples from three vertically arranged pixels. Three samples are taken from the current pixel, two samples are taken from a pixel immediately above the current pixel and two samples are taken from a pixel immediately below the current pixel. A weighted average is then computed based on the enabled samples to determine the final color for the pixel. The weight coefficients used in the blending filter are also individually programmable. De-flickering of thin one-pixel tall horizontal lines for interlaced video displays is also accomplished by using the pixel blending filter to blend color samples from pixels in alternate scan lines.
Owner:NINTENDO CO LTD

Antialiased imaging with improved pixel supersampling

An image processing system is described that receives polygonal image data at the direction of a processor and develops antialiased image data for display on a raster scanned display. In particular, the image system includes a scan convertor for converting the polygonal image data into pixel data, which includes pixel screen coordinates and at least one color value for each polygon covered pixel of the pixel data and a supersample coverage mask indicating an extent of polygon coverage within each polygon covered pixel. The image system also includes a raster system having at least one image processor for receiving the pixel data for each pixel, for developing a region mask based on the supersample coverage mask, and for storing the color value in association with the region mask as anitialiased display data in an image memory in communication with the image processor based on the pixel screen coordinates. The region mask indicates one or more, geographical regions of supersamples within each pixel covered by one or more polygons and indicates a color value stored in the image memory to be assigned to the supersamples in a region. This requires only a single color value for supersamples within a region of a covered pixel to be stored in the image memory. The image system can also be configured to develop and store Z-values, alpha values, stencil values, and texture values for each pixel for storage in the image memory in association with the region mask.
Owner:MICROSOFT TECH LICENSING LLC

Graphics system having a super-sampled sample buffer with generation of output pixels using selective adjustment of filtering for reduced artifacts

A computer graphics system that utilizes a super-sampled sample buffer and a programmable sample-to-pixel calculation unit for refreshing the display, wherein the graphics system may adjust filtering to reduce artifacts or implement display effects. In one embodiment, the graphics system may have a graphics processor, a super-sampled sample buffer, and a sample-to-pixel calculation unit. The graphics processor renders a plurality of samples and stores them into a sample buffer. The sample-to-pixel calculation unit reads the samples from the super-sampled sample buffer and filters or convolves the samples into respective output pixels which are then provided to refresh the display. The sample-to-pixel calculation unit may selectively adjust the filtering of stored samples to reduce artifacts, e.g., is operable to selectively adjust the filtering of stored samples in neighboring frames to reduce artifacts between the neighboring frames. The filter adjustment may be applied where the sample-to-pixel calculation unit generates output pixels at the same rate as the graphics processor rendering samples to the sample buffer, or at a different (e.g., higher) rate than the render rate. The sample-to-pixel calculation unit is operable to adjust filtering of stored samples to implement a display effect, such as panning, zooming, rotation, or moving scenes, among others. The sample-to-pixel calculation unit may also selectively adjust the filtering of stored samples on a fractional-pixel boundary.
Owner:ORACLE INT CORP

Graphics system having a super-sampled sample buffer with generation of output pixels using selective adjustment of filtering for implementation of display effects

A computer graphics system that utilizes a super-sampled sample buffer and a programmable sample-to-pixel calculation unit for refreshing the display, wherein the graphics system may adjust filtering to reduce artifacts or implement display effects. In one embodiment, the graphics system may have a graphics processor, a super-sampled sample buffer, and a sample-to-pixel calculation unit. The graphics processor renders a plurality of samples and stores them into a sample buffer. The sample-to-pixel calculation unit reads the samples from the super-sampled sample buffer and filters or convolves the samples into respective output pixels which are then provided to refresh the display. The sample-to-pixel calculation unit may selectively adjust the filtering of stored samples to reduce artifacts, e.g., is operable to selectively adjust the filtering of stored samples in neighboring frames to reduce artifacts between the neighboring frames. The filter adjustment may be applied where the sample-to-pixel calculation unit generates output pixels at the same rate as the graphics processor rendering samples to the sample buffer, or at a different (e.g., higher) rate than the render rate. The sample-to-pixel calculation unit is operable to adjust filtering of stored samples to implement a display effect, such as panning, zooming, rotation, or moving scenes, among others. The sample-to-pixel calculation unit may also selectively adjust the filtering of stored samples on a fractional-pixel boundary.
Owner:ORACLE INT CORP

A computational imaging method and device based on a folding mask structure

The invention provides a computational imaging method and device based on a folding mask structure. The method comprises the following steps: generating a mask sequence by reducing symmetry and symmetry reverse folding; according to the number of connected regions in each mask of the mask sequence, performing abnormal correction on the mask sequence to obtain an optimal mask sequence; selecting apreset number of masks from the optimal mask sequence for complementary difference measurement and image reconstruction. According to the contribution degree of the mask to the reconstruction qualityof the object to be imaged, a mask sequence is constructed by using a mask reducing symmetry and symmetry reverse fold, and the abnormal order of the mask is corrected according to the increasing order of the number of the connected regions of the mask so that the probability of emergence of masks with the same number of connected regions is reduced and the uncertainty of masks is reduced; the mask structure is optimized, and the optimized mask sequence is used for image reconstruction, which improves the quality and efficiency of image reconstruction; and the method has the advantages of supersampling, supersensitivity, low sampling dimension, high speed and real-time.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Graphics system having a super sampled-sample buffer with efficient storage of sample position information

A computer graphics system that utilizes a super-sampled sample buffer and a sample-to-pixel calculation unit for refreshing the display, wherein the graphics system may store sample position information as offsets to coordinates in the sample buffer. The graphics system may have a graphics processor, a super-sampled sample buffer, and a sample-to-pixel calculation unit. The graphics processor renders samples into the sample buffer at computed positions or locations in the sample buffer. The sample positions may be computed using various sample positioning schemes. The sample-to-pixel calculation unit uses the position information to select the samples for filtering during generation of output pixels. In one embodiment, for each sample, the position information comprises one or more offset values, such as an x-offset and a y-offset, wherein the offset values are relative to pre-defined locations in the sample buffer, such as pre-determined pixel center coordinates or predetermined bin coordinates. The position information may be stored in the sample buffer with the samples, or may be stored in a separate sample position memory coupled to the graphics processor. The samples may also be stored according to a bin ordering, wherein the bin ordering indicates a position of the samples in the respective bin. The sample-to-pixel calculation unit may use the bin ordering of the samples in the bins to index into a look-up table memory to determine the position information of the samples. The graphics system may include double buffered sample position memories.
Owner:ORACLE INT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products