Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2657results about "Filling planer surface with attributes" patented technology

Method and apparatus for anti-aliasing in a graphics system

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The system achieves highly efficient full-scene anti-aliasing by implementing a programmable-location super-sampling arrangement and using a selectable-weight vertical-pixel support area blending filter. For a 2×2 pixel group (quad), the locations of three samples within each super-sampled pixel are individually selectable. A twelve-bit multi-sample coverage mask is used to determine which of twelve samples within a pixel quad are enabled based on the portions of each pixel occupied by a primitive fragment and any pre-computed z-buffering. Each super-sampled pixel is filtered during a copy-out operation from a local memory to an external frame buffer using a pixel blending filter arrangement that combines seven samples from three vertically arranged pixels. Three samples are taken from the current pixel, two samples are taken from a pixel immediately above the current pixel and two samples are taken from a pixel immediately below the current pixel. A weighted average is then computed based on the enabled samples to determine the final color for the pixel. The weight coefficients used in the blending filter are also individually programmable. De-flickering of thin one-pixel tall horizontal lines for interlaced video displays is also accomplished by using the pixel blending filter to blend color samples from pixels in alternate scan lines.
Owner:NINTENDO CO LTD

Antialiased imaging with improved pixel supersampling

An image processing system is described that receives polygonal image data at the direction of a processor and develops antialiased image data for display on a raster scanned display. In particular, the image system includes a scan convertor for converting the polygonal image data into pixel data, which includes pixel screen coordinates and at least one color value for each polygon covered pixel of the pixel data and a supersample coverage mask indicating an extent of polygon coverage within each polygon covered pixel. The image system also includes a raster system having at least one image processor for receiving the pixel data for each pixel, for developing a region mask based on the supersample coverage mask, and for storing the color value in association with the region mask as anitialiased display data in an image memory in communication with the image processor based on the pixel screen coordinates. The region mask indicates one or more, geographical regions of supersamples within each pixel covered by one or more polygons and indicates a color value stored in the image memory to be assigned to the supersamples in a region. This requires only a single color value for supersamples within a region of a covered pixel to be stored in the image memory. The image system can also be configured to develop and store Z-values, alpha values, stencil values, and texture values for each pixel for storage in the image memory in association with the region mask.
Owner:MICROSOFT TECH LICENSING LLC

Apparatus and method for parallel rendering of image pixels

There is provided a rendering system for processing pixels corresponding to a predetermined graphic in parallel by dividing a two-dimensional image coordinate system into areas each composed of a plurality of pixels of N pixels in a first direction and M pixels in a second direction perpendicular to the first direction, i.e. NxM pixels in total, and by allocating NxM computing sections respectively to the NxM pixels contained in that area. Specifically, the rendering system comprises a calculating section for calculating variations of the rendering data with respect to the first and second directions necessary for interpolating values of the rendering data in each pixel within a predetermined graphic from predetermined apex data of the predetermined graphic and an initial value of the rendering data with respect to the coordinate in the first direction which becomes the reference for computing the rendering data with respect to the second direction by means of interpolation by using the value of the predetermined apex data and the variation of the rendering data with respect to the first direction; and NxM computing sections for calculating the rendering data of the pixel in the second direction by means of interpolation by using the above-mentioned initial value and the variation of the rendering data with respect to the second direction. Thereby, the present invention allows the pixels to be rendered in parallel at high speed in the definition of sub-pixel level.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products