Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2651results about "Vehicle body streamlining" patented technology

Air drag reducing apparatus

An air drag reducing apparatus for use with a vehicle having a rear end closed by a pair of doors consists of a rectangular shaped panel having a leading edge hingedly connected to the vehicle, the panel extending at about 16 degrees relative to the rearward projection of a side of the vehicle in a drag reducing position. As the door is opened, an element allows the panel to be moved between the door and the side of the vehicle to a position adjacent the side of the vehicle. As the door is moved back from the opened position to a closed position, the element causes the panel to return to its drag reducing position. The rear of a vehicle includes two side panels and two top panels.
Owner:TRANSTEX LLC

Air drag reducing apparatus

An air drag reducing apparatus for use with a vehicle having a rear end closed by a pair of doors consists of a rectangular shaped panel having a leading edge hingedly connected to the vehicle, the panel extending at about 15 degrees relative to the rearward projection of a side of the vehicle. An element positions the panel in a drag reducing position; this element is such that it allows the panel to be moved between the door and the side of the vehicle as the door is opened and moved to a position adjacent the side of the vehicle. As the door is moved back from the opened position to a closed position, the element causes the panel to return to its drag reducing position. The rear of a vehicle may include two side panels with or without two top panels.
Owner:TRANSTEX LLC

Device for reducing vehicle aerodynamic resistance

A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.
Owner:FREIGHT WING

Integrated energy absorber and air flow management structure

An integrated assembly includes a bumper energy absorber section with crush lobes for abutting a bumper beam, an upper air shutter section with subassembled shutter members movable between closed and open positions, a first actuator mechanism for moving the shutter members between positions, an upper fascia support section with upper leg crush lobe therein above the upper air shutter section, a lower air shutter section with subassembled lower shutter members movable between closed and open positions, a second actuator mechanism for moving the lower shutter members between the positions; and a lower leg energy absorber section attached below the lower air shutter section and configured to abut (or replace) a face of a secondary pedestrian impact bar. The shutter members may be molded to a shutter frame using over molding technology rather than separately, manually assembled.
Owner:SHAPE CORP

Trailer skirt panel

ActiveUS7578541B2Reducing aerodynamic drag on road vehiclesIncrease air flowVehicle seatsWindowsAerodynamic dragEngineering
A skirt panel is provided herein for interconnection to another abutted similar skirt panel for attachment beneath a lower, outer longitudinally-extending edge of a trailer including a rear wheel assembly of a tractor-trailer rig, thereby to provide a continuous fairing extending downwardly from the trailer. The skirt panel includes a monolithic, generally-rectangular composite reinforced thermoplastic structure, having vertical lateral side edges configured and arranged for connection to associated vertical lateral side edges of abutting similar skirt panels. This provides a longitudinally-extending fairing for extending contiguously on each side of the trailer, a front face of the thermoplastic structure being provided with a plurality of longitudinally-extending, vertically-spaced-apart arcuate protrusions. The outer face of the thermoplastic panel preferably also is provided with dimples. The reinforcing comprising a panel secured to an inner face of the skirt panel and is provided with laterally-extending means whereby abutting skirt panels are secured to one another; whereby, when said fairing is secured to a lower portion of said trailer, the fairing extends downwardly from the trailer to from 60% to 80% of the distance to the road, so that a portion of any impinging air is directed laterally around the wheels of the rear wheel bogeys to reduce the aerodynamic drag of the trailer and of the wheel assembly.
Owner:ZF COMPOSITES NORTH AMERICA LTD

Device for reducing vehicle aerodynamic resistance

A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.
Owner:FREIGHT WING

Aerodynamic drag reduction apparatus for wheeled vehicles in ground effect

InactiveUS6974178B2Reducing the aerodynamic drag of a wheeled vehicleReduce pressureVehicle seatsWindowsAerodynamic dragEngineering
An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Aerodynamic drag reducing system with retrofittable, selectively removable frame

The present invention relates to an aerodynamic drag reducing system for land vehicles, in particular semi-tractor trailers. The drag reducing system includes a selectively removable frame and a drag reduction member. The selectively removable frame can adapt to conform to at least one of the width or height of the land vehicle, and can be secured thereto by a securement assembly. In one embodiment, the drag reducing system can be folded and collapsed for compact storage. The drag reducing system can be easily and quickly secured to the back end of a semi-tractor trailer without tools and without requiring that any permanent modifications be made to the trailer. In one embodiment, drag reducing system includes a hinge joint assembly to facilitate installation, removal, and repositioning of drag reducing system.
Owner:COSGROVE WILLIAM E +1

Aerodynamic combination for improved base drag reduction

InactiveUS6959958B2Maximum base drag savingReduce base dragVehicle seatsWindowsBody shapeEngineering
An improved method and device for reducing the base drag of bluff bodies, including large boxy highway vehicles such as semi-trailer trucks, which uses low drag vortex generators in combination with either a trailing panel or shortened boattail plates, to provide greater base drag reduction than other previously known methods. The preferred embodiment reduces the required length of boattail plates by over half, making it compatible with current U.S. regulations for trailer underride bars, and providing easier access for rear cargo doors. The device is easily installed as an add-on device on both new and existing truck bodies. In an alternate configuration, the shape of one or more sets of shortened boattail plates can be built into the rear body shape of vehicles, to maximize the interior volume for a given total vehicle length.
Owner:BASFORD WILLIAM C

Device for reducing vehicle aerodynamic resistance

ActiveUS7008005B1Reducing vehicle aerodynamic resistanceReduce air resistanceVehicle seatsWindowsMechanical engineeringAerodynamic force
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.
Owner:FREIGHT WING

Fuel-efficient tractor-trailer system

A fuel-efficient tractor-trailer system for improving the fuel mileage of a tractor-trailer combination by improving the air resistance that occurs in the area between the rear of the tractor and the front of the semi-trailer. The fuel-efficient tractor-trailer system provides an improved roof extension, which automatically raises when the tractor is put into reverse gear and an improved wheel mechanism for assisting the side extensions to slide around the semi-trailer ends when the tractor-trailer is turning. The fuel-efficient tractor-trailer system requires only modification to the tractor and not the trailer.
Owner:GENERAL DYNAMICS C4 SYSTEMS

Retractable air deflection apparatus for reduction of vehicular air drag

InactiveUS7641262B2Optimize the aerodynamic drag reductionVehicle seatsWindowsAerodynamic dragBack door
An air deflection apparatus for reduction of vehicular air drag comprises at least one air deflection element coupled to a rear portion of the vehicle but not to the rear-facing surface of the vehicle or, in other embodiments, at least one air deflection element coupled to a rear portion of the vehicle but not to any rear door which the vehicle may have. The air deflection elements are displaceable, preferably in unison, between a retracted position and at least one deployed position in which the air deflection elements intersect with the air flowing around the top and sides, and preferably also the bottom, of the vehicle, and in which they divert that airflow in a manner that enhances the aerodynamic characteristics of the vehicle and thereby improves its fuel economy, resulting in a reduction in fuel cost. The air deflection elements may be deployed and retracted manually, or remotely with powered assistance, or under microprocessor control, with the latter allowing for optimal positioning of the air deflection elements based either on pre-stored values, or on values derived, utilizing an optional feedback mechanism, from real-time vehicular speed and fuel consumption data. Vehicles equipped with the apparatus, and methods of reducing vehicular air drag using the apparatus, are also disclosed.
Owner:NUSBAUM HOWARD G

Trailer wheel fairings

A wheel fairing and preferably a set of wheel fairings for reducing aerodynamic drag caused by the left-side and right side wheel sets of a rear wheel assembly supporting a trailer body at its rear end. The fairing body includes a tapered aerodynamic surface with a substantially U-shaped cross-section that tapers from a second end to a first end, and a base surface at the second end with a substantially same dimensional profile as one of the left-side or right-side wheel sets. Fasteners or other mounting devices secure each fairing body to an underside of the trailer body either upstream (as a nose fairing) or downstream (as a tail fairing) of the rear wheel assembly so that the second end is adjacent to an exposed rolling surface of the left-side or right side wheel set.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Airflow control devices based on active materials

An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and / or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and / or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and / or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
Owner:GM GLOBAL TECH OPERATIONS LLC

Rear-mounted aerodynamic structure for truck cargo bodies

ActiveUS20080309122A1Reduce resistanceRapid and easy transitionVehicle seatsWindowsEngineeringActuator
This invention provides an aerodynamic structure attached to the rear face of a truck cargo body, which rear typically contains a door assembly, with a plurality of doors that swing open on hinges, or a single, full-width door, which rolls upwardly. The various embodiments of the invention allow an aerodynamic structure to be permanently attached to the rear of the trailer in a manner that would obscure access to the door(s) in a deployed position, in which the aerodynamic structure generates reduced drag on the trailer body, yet enables ready access to the door(s) in a folded position. The folded position still allows the rear of the trailer to be fully accessible for loading and unloading, and in the case of swinging, hinged doors (among others), allows the doors to be folded through a full 270-degree arc from a closed position to a position flush along the sides of the vehicle, with a minimal sideways projection. The various embodiments also enable relatively rapid and easy transition between the folded position and the deployed position using a variety of actuators and linkages that tie the folding and deployment of various panels of the structure together. This allows an operator to selectively fold and deploy the structure without undue effort or strength.
Owner:STEMCO PROD INC

Cab extender assembly method and apparatus

InactiveUS6886882B2Improved drag coefficientSelectively manipulating an aerodynamic drag of a vehicleVehicle seatsWindowsAerodynamic dragControl system
A cab extender assembly (200) for selectively manipulating an aerodynamic drag of a vehicle (100) is provided. The cab extender assembly includes a dynamic cab extender (206a) and a control system (208) coupled to the dynamic cab extender. The control system is adapted to selectively position the dynamic cab extender between a stowed position, a deployed position in which the dynamic cab extender is substantially aligned with a side of the vehicle, and a braking position in which the dynamic cab extender is at least partially disposed into an airstream passing along the side of the vehicle to increase a drag coefficient of the vehicle. The cab extender assembly may also include a fixed cab extender (204a) substantially aligned with the dynamic cab extender when the dynamic cab extender is in the deployed position. A method of operating a cab extender assembly is also disclosed.
Owner:PACCAR INC

Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators

The present invention relates to a method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly to controlling fluid flow across their surfaces or other surfaces, which would benefit from such a method. The method includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and more particularly to the method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. The various embodiments provide the steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control provides a means for reducing aircraft, missile's, munition's and ground vehicle's power requirements. These methods also provide alternate means for aerodynamic control using low-power hingeless plasma actuator devices.
Owner:UNIV OF NOTRE DAME DU LAC +1

Rear-mounted aerodynamic structure for truck cargo bodies

This invention provides a foldable / retractable and unfoldable / deployable, rearwardly tapered aerodynamic assembly for use on the rear trailer bodies and other vehicles that accommodate dual swing-out doors. The aerodynamic assembly includes a right half mounted on the right hand door and a left half mounted on a left hand door. Each half is constructed with a side panel, top panel and bottom panel, which each form half of an overall tapered box when deployed on the rear of the vehicle, the bottom panels and top panels being sealed together at a pair of overlapping weather seals along the centerline. The panels are relatively thin, but durable, and are joined to each other by resilient strip hinges. The top and bottom panels are also hinged to form two sections along diagonal lines to facilitate folding of all panels in a relatively low-profile stacked orientation. This low profile allows the doors to be swung through approximately 270 degrees to be secured to the sides of the body in a manner that does not interfere with adjacent doors or bodies in, for example a multi-bay loading dock. A swing arm assembly and gas spring biases the panels into a deployed position that can be refolded by grasping the side panel and rotating it inward toward the door surface. The top and bottom panels are partly inwardly folded when deployed to define external valleys using a stop assembly. This ensures that the panels fold readily when desired without the two sections of the panels “locking up”.
Owner:STEMCO PROD INC

Adjustable cab extender assembly method and apparatus

An adjustable cab extender assembly (200) adapted to couple to a vehicle (100) including a tractor (102) coupled to a trailer (104) is provided. The assembly includes a dynamic cab extender (206) adjustable in length and operable to be disposed in a gap (106) extending between the tractor and the trailer. The assembly includes a speed sensor (268) operable to sense a speed of the vehicle. The assembly also includes a control system (208) coupled in signal communication with the speed sensor and coupled to the dynamic cab extender. The control system is operable to automatically adjust a longitudinal length of the dynamic cab extender to selectively adjust a proximity of a trailing edge of the dynamic cab extender relative to a front end of the trailer when the sensed speed exceeds a selected speed. The control system may also place the dynamic cab extender in a stowed position.
Owner:PACCAR INC

Vehicle drag reduction apparatus

A vehicle air drag reduction system is provided for mounting on the rearward facing surface of a vehicle, and in particular a truck trailer, that provides improved efficiency. The system comprises a flexible panel that will assume a cone-shape at the rearward end of the trailer, and which is held in place by a plurality of support rods fitted within the flexible panel, and which attach to brackets mounted on said trailer. An inexpensive and simple air drag reduction system is provided which is easily attached or removed from a vehicle is provided.
Owner:VALA PHILIP

Vehicle fairing system

InactiveUS20080061598A1Improve efficiencyImproved aerodynamic profileVehicle seatsWindowsCowlingTractor trailer
A combination of vehicle fairing structures forming a fairing system having a front end structure, a rear end structure, and first and second side structures, for optimizing the aerodynamic profile of vehicles, especially tractor-trailer combinations.
Owner:AEROFFICIENT

Aerodynamic trailer skirts

A resilient skirt assembly is provided, the assembly comprising a skirt panel adapted to connect to a trailer to direct at least a portion of the amount of air on the side of the trailer; and a skirt support adapted to connect the skirt to a trailer, the skirt support having a resilient strut providing lateral support to the skirt panel, the resilient strut allowing substantial lateral pivotal movement of the skirt panel between a skirt panel unloaded position and a skirt panel loaded position. A method of assembling a skirt assembly and a skirt kit are also provided.
Owner:TRANSTEX LLC

Integrated energy absorber and air flow management structure

An integrated assembly includes a bumper energy absorber section with crush lobes for abutting a bumper beam, an upper air shutter section with subassembled shutter members movable between closed and open positions, a first actuator mechanism for moving the shutter members between positions, an upper fascia support section with upper leg crush lobe therein above the upper air shutter section, a lower air shutter section with subassembled lower shutter members movable between closed and open positions, a second actuator mechanism for moving the lower shutter members between the positions; and a lower leg energy absorber section attached below the lower air shutter section and configured to abut (or replace) a face of a secondary pedestrian impact bar. The shutter members may be molded to a shutter frame using over molding technology rather than separately, manually assembled.
Owner:SHAPE CORP

Air Drag Reduction Apparatus for Tractor-Trailers

An air drag reduction apparatus includes left and right panels and top and bottom panels for mounting to the rear doors of a tractor trailer along the top, bottom and side edges thereof. Hinges are interposed between the panels and the doors so that the panels can pivot about the hinges between an extended drag-reducing position and a collapsed position generally adjacent the rear doors. Stop devices releasably secure the panels in the extended position, and biasing devices such as tensioning springs are operative to bias the panels outwardly and rearwardly to the extended position and are further operative to permit the panels to pivot between the extended position towards and to the collapsed position upon impact and contact from an external object occurring and then return to the extended position substantially immediately upon contact ceasing thereby significantly reducing the impact damage. The apparatus also includes a ramp and wheel arrangement to facilitate opening and collapsing of the panels. The apparatus of the invention also includes an outwardly extending panel protection member projecting from the lower corner of the panel in a position for being contacted by external objects during movement of the vehicle to thereby prevent direct contact between an external object and the panel and cause the panel to move toward its collapsed position
Owner:HOLUBAR ROBERT

Air drag reduction apparatus for tractor-trailers

A air drag reduction apparatus includes left and right planar panels and top and bottom planar panels for mounting to the rear doors of a tractor trailer along the top, bottom and side edges thereof. Hinges are interposed between the panels and the doors so that the panels can pivot about the hinges between an extended drag-reducing position and a collapsed position generally adjacent the rear doors. Stop devices releasably secure the panels in the extended position, and biasing devices such as tensioning springs are operative to bias the panels outwards and rearwards to the extended position and are further operative to permit the panels to pivot between the extended position towards and to the collapsed position upon impact and contact from an external object occurring and then return to the extended position substantially immediately upon contact ceasing thereby significantly reducing the impact damage.
Owner:HOLUBAR ROBERT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products