Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7101results about "Propulsion cooling" patented technology

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Cooling structure an electric vehicle

An electric vehicle includes plurality of batteries accommodated in a rear portion of a battery box, and an electric part is accommodated in an electric part accommodating chamber provided in a front portion of the battery box. Cooling air supplied from a cooling fan to the rear portion of the battery box cools the batteries having a large thermal resistance, while being passed through a first cooling air passage around outer peripheries of the batteries at a low flow rate. A second cooling air passage having a smaller sectional area than that of the first cooling air passage is provided below the electric part accommodating chamber, and cooling fins protruding downwards from the electric part are exposed within the second cooling air passage. The second cooling air passage extends continuously the first cooling air passage in a downstream direction of airflow, so that cooling air which has first cooled the batteries then cools the electric part having a smaller thermal resistance, while being passed through the second cooling air passage at a higher flow rate than that in the first cooling air passage.
Owner:HONDA MOTOR CO LTD

Side-by-side ATV

The present invention relates to all terrain vehicles having at least a pair of laterally spaced apart seating surfaces. More particularly, the present invention relates to trail compliant side-by-side all terrain vehicles.
Owner:POLARIS IND INC

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Method of thermal management for a hybrid vehicle

A method of thermal management for a thermal management system in a vehicle includes the steps of selecting a thermal management function. The method also includes the steps of adjusting a temperature within the thermal management system using the thermal management function and using the adjusted temperature within the thermal management system to control a temperature within an occupant compartment of the vehicle.
Owner:VISTEON GLOBAL TECH INC

Side-by-side ATV

The present invention relates to all terrain vehicles having at least a pair of laterally spaced apart seating surfaces. More particularly, the present invention relates to trail compliant side-by-side all terrain vehicles.
Owner:POLARIS IND INC

Integrated thermal cycling system of electric vehicle

ActiveCN102941791AAchieve mutual integrationMeet the high requirements of the service temperatureAir-treating devicesCell temperature controlAir conditioningElectric vehicle
The invention relates to the field of heat management of electric vehicles, and in particular to an integrated thermal cycling system of an electric vehicle. The integrated thermal cycling system of the electric vehicle comprises a motor system heat dissipation device, a motor, a motor controller, an air-conditioning system, a first water pump, an air heater, a water cooling jacket, a battery pack, a heater, a battery pack heat dissipation device, a second water pump, a heat exchanger and an evaporator; and a refrigerant pipeline and a water pipeline are connected onto the heat exchanger, the water cooling jacket is installed on the battery pack, and the motor system heat dissipation device, the first water pump, the motor controller and a motor are sequentially and circularly connected with each other according to the circulating water flowing direction, so that a motor cooling cycling circuit is formed. When the environment temperature is low, the battery pack is preheated and heated and an air conditioner in the vehicle is warmed up before the electric vehicle is started, when the environment temperature is high, the battery pack is cooled, a cab is refrigerated and the motor and the motor controller are cooled, accordingly, high requirements on the self operating temperatures of the motor system and a battery are satisfied, so that the service lives and efficiency of the motor system and the battery are increased.
Owner:SAIC MOTOR

All terrain vehicle

A straddle-type vehicle, or all terrain vehicle, has an engine located towards the rear of the vehicle such that a main portion of the engine, or power unit, is disposed beneath the seat. The fuel tank extends generally vertically beneath the steering member. The radiator is located at a rear portion of the vehicle rearwardly of the engine where it is protected from collisions and objects striking the front grille. A front storage compartment is also provided in the front portion of the vehicle. The vehicle also has a pivotally connected and removable seat for easy access to the engine. There is also a gap between the seat and the front wheel well through which the driver can pass his feet or where an optional container or auxiliary fuel tank can be secured.
Owner:BOMBARDIER RECREATIONAL PROD INC

Integrated energy absorber and air flow management structure

An integrated assembly includes a bumper energy absorber section with crush lobes for abutting a bumper beam, an upper air shutter section with subassembled shutter members movable between closed and open positions, a first actuator mechanism for moving the shutter members between positions, an upper fascia support section with upper leg crush lobe therein above the upper air shutter section, a lower air shutter section with subassembled lower shutter members movable between closed and open positions, a second actuator mechanism for moving the lower shutter members between the positions; and a lower leg energy absorber section attached below the lower air shutter section and configured to abut (or replace) a face of a secondary pedestrian impact bar. The shutter members may be molded to a shutter frame using over molding technology rather than separately, manually assembled.
Owner:SHAPE CORP

Mounting structure for battery in electric vehicle

Provided is a mounting structure for a battery in an electric vehicle capable of increasing a driving distance of the electric vehicle by mounting a plurality of battery modules in an existing vehicle body of en electric vehicle. The mounting structure for a battery in an electric vehicle according to an exemplary embodiment of the present invention includes a main relay box electrically connected with an inverter, a plurality of first battery modules mounted beneath the rear seats of the electric vehicle, and a main housing positioned between a pair of front seats in the electric vehicle and below the rear seat. More specifically, the main housing is configured to house the main relay box and first battery modules therein, and is fixed to the vehicle body of the electric vehicle.
Owner:HYUNDAI MOTOR CO LTD +1

Engine room for construction equipment

An engine room for construction equipment is provided, which can minimize emission of noise generated in an engine room due to driving of an engine and a ventilating fan to an outside of the engine room by absorbing the noise through a noise trap, and can improve the cooling performance of corresponding components by smoothing inhalation / discharge of an external air to / from the airtight engine room. The engine room for construction equipment includes a radiator cooling water for cooling the engine, a muffler discharging an exhaust gas from an engine to the atmosphere, a first noise trap installed in an inlet port to absorb noise generated in the engine room and emitted to an outside, a second noise trap installed in an outlet port to absorb the noise generated in the engine room and emitted to the outside, a radiator fan inhaling the external air through the first noise trap and making the inhaled external air pass through the radiator and the circumference of the engine, a discharge fan discharging the air in the engine room to the outside through the second noise trap, and an outer wall forming an airtight space for accommodating therein the engine, the muffler, the radiator fan, the hydraulic pump, and the discharge fan that generate the noise.
Owner:VOLVO CONSTR EQUIP HLDG SWEDEN AB

Engine cooling system

An engine cooling system includes a first heat exchanger receiving a first fluid and a second heat exchanger receiving a second fluid. The second heat exchanger is located adjacent the first heat exchanger, thereby creating a stacked heat exchanger. The engine cooling system also includes a third heat exchanger receiving a third fluid. The third heat exchanger is located apart from the stacked heat exchanger. A venturi is located between the stacked heat exchanger and the third heat exchanger. An air mover is mounted to the venturi and located within the venturi. The air mover is configured to move air through the stacked heat exchanger and through the third heat exchanger. In a specific embodiment, the engine cooling system is incorporated into a vehicle, such as a skidder vehicle.
Owner:CATERPILLAR FOREST PRODS

Structure for mounting battery pack on vehicle

In a structure for mounting a battery pack on a vehicle, since a recess portion, into which a cross member is fitted, is formed on an upper face of a battery case so as to extend in a vehicle width direction, it is possible to mount the battery pack on a vehicle body without interfering with the cross member, and it is unnecessary to raise the position of the cross member or form a cutout in the cross member, thereby enabling a balance to be achieved between the capacity of a vehicle compartment and the strength of the cross member while ensuring a sufficient minimum ground clearance for the battery pack and preventing a battery from becoming wet. Furthermore, since the recess portion is formed on the upper face of the battery case, a cooling passage disposed beneath the battery is not narrowed, thus ensuring the battery cooling performance.
Owner:HONDA MOTOR CO LTD

Construction machine

In a construction machine having an engine room and capable of efficiently collecting air flowing in the engine room, a heat exchanger provided at a first side of the engine, and a fan provided at the first side and rotating to generate around the engine a flow of cooling air, further includes an exhaust duct extending in a fan axial direction parallel with a rotation axis of the fan along the engine. The exhaust duct guides the flow of the air to collect the air flowing downstream of the fan in the fan axial direction, in a region extending in the fan axial direction, and discharges the air to an outside of the engine room.
Owner:KOBELCO CONSTR MASCH CO LTD

Air inlet for ATV

An all terrain vehicle has a frame assembly. A pair of front wheels and a pair of rear wheels support the frame assembly. A front fender assembly extends over at least a portion of the front wheels. An engine is disposed between the front wheels and the rear wheels. The engine is water-cooled using a radiator and fan combination that is positioned forward of the engine. A belt drive forms a portion of a transmission that transfers power from the engine to at least the rear wheels. The belt drive is air cooled with air that is pulled into the belt drive by fans positioned within a belt case. The air is drawn from an air chamber formed within the front fender assembly. The chamber is positioned vertically higher than the radiator and fan combination and rearward thereof. The air passes between the chamber and the belt case through a duct. The duct extends downward and incorporates a central trap portion. The duct is positioned to lie at least partially within an area that overlaps the fan from a front elevation view. The duct also bends across a central longitudinal plane from inlet to outlet to allow a compact configuration while positioning the duct in protected regions.
Owner:YAMAHA MOTOR CO LTD

Battery Pack Base Plate Heat Exchanger

A heat exchanger integrated into an electric vehicle's battery pack enclosure is provided, where the heat exchanger conduits are mechanically and thermally coupled to the inside surface of the enclosure base plate and where the battery pack enclosure is mounted such that ambient air flows over the outside surface of the enclosure base plate during vehicle motion. A thermal management system is coupled to, and controls operation of, the integrated battery pack heat exchanger such that in a first operational mode the heat exchanger is thermally coupled to the batteries within the battery pack, and in a second operational mode the heat exchanger is thermally decoupled from the batteries within the battery pack.
Owner:TESLA INC

Electrical device cooling structure in vehicle

In a power supply unit disposed below a floor behind a seat, battery modules are disposed in a lower position, and a DC / DC converter and a motor driving inverter are disposed side by side in a vehicle width direction above the battery modules. Thus, cooling air flowing from the front side to the rear side of a vehicle body is divided into upper and lower portions to cool in parallel the DC / DC converter and the motor driving inverter on the upper side and the battery modules on the lower side. Thus, it is possible to simplify a passage of the cooling air to reduce the size of the entire power supply unit, and improve mountability of the power supply unit on the vehicle body. Also, it is possible to apply low temperature cooling air, before heat exchange, to the battery module, the DC / DC converter, and the motor driving inverter.
Owner:HONDA MOTOR CO LTD

Thermal Management System with Dual Mode Coolant Loops

A dual mode, thermal management system for use in a vehicle is provided. At a minimum, the system includes a first coolant loop in thermal communication with a battery system, a second coolant loop in thermal communication with at least one drive train component (e.g., electric motor, power electronics, inverter), and a dual mode valve system that provides means for selecting between a first mode where the two coolant loops operate in parallel, and a second mode where the two coolant loops operate in series.
Owner:TESLA INC

Motor vehicle and control method of motor vehicle

A motor vehicle is equipped with an outside air introduction assembly 104 functioning to introduce the outside air into a radiator 92 in an engine cooling system during driving, as well as with an outside air introduction assembly 114 functioning to introduce the outside air into an engine 22 during driving. The motor vehicle is also equipped with shutter plates 106 capable of regulating the amount of the outside air to be introduced by the outside air introduction assembly 104, as well as with shutter plates 116 capable of regulating the amount of the outside air to be introduced by the outside air introduction assembly 114. The shutter plates 106 and the shutter plates 116 are individually actuated and controlled to increase the amount of the outside air to be introduced by the outside air introduction assembly 104 and the amount of the outside air to be introduced by the outside air introduction assembly 114 with an increase of temperature of cooling water detected as a cooling water temperature Twe in the engine cooling system. Such actuation and control assures the adequate cooling performances to cool down the cooling water by the radiator 92 and to cool down the engine 22.
Owner:TOYOTA JIDOSHA KK

Shutter for closing openings with pivotal shutter elements

A shutter for closing openings with pivotal shutter elements, the rotational axes of which are arranged parallel to each other. Better sealing is achieved in that the shutter elements consist of at least two wings that are solidly joined together and arranged almost parallel to each other. The wings of the shutter elements are oriented substantially parallel to an imaginary plane of the opening, thus closing it on both sides, in a first position and substantially normal to the plane of the opening, thus clearing said opening, in a second position.
Owner:AVL LIST GMBH

Variable vent system integrated into a vehicle front end grill

A system for variable engine compartment ventilation in a slim and compact unit with components used in non-related industries. The system can have at least one bank of movable louvers rotatably mounted within a louver frame for guiding a flow of air into a vehicle engine compartment; a motor to rotate the louvers with a motor gear formed on an output shaft rotatably connected in parallel to at least one helix cable by a helix cable drive gear and a louver pinion gear integral with each louver engaging the helix cable along its length; and a control unit for operating the assembly of movable louvers in response to an output signal from a vehicle communication bus. The output signal of the vehicle communication bus can be in response to input from an engine coolant temperature sensor or a vehicle speed sensor.
Owner:WEBASTO AG

Cooling device high voltage electrical unit for motor of vehicle, and hybrid vehicle

A cooling device for a high voltage electrical unit for a motor of a vehicle, includes: an inverter for controlling the motor that drives the vehicle; an electrical energy storing device for supplying electrical energy to the motor via the inverter; a downverter for decreasing source voltage of the electrical energy storing device, the downverter, the inverter, and the electrical energy storing device disposed under a seat of the vehicle in a concentrated manner; a fan, disposed under the seat, for moving cooling air to the electrical energy storing device and the inverter; an air inlet disposed under the seat and at an end of the seat as viewed in a width direction of the vehicle; and an air outlet disposed under the seat and at the other end of the seat as viewed in a width direction of the vehicle.
Owner:HONDA MOTOR CO LTD

Grill shutter structure of vehicle

A grill shutter unit comprises a shutter unit provided in back of a traveling-air introductory port formed at a front end of a vehicle body and including shutter members, and a traveling-air guide member including a guide frame portion provided at an outer peripheral edge portion of the shutter unit and a seal portion provided to extend forward continuously from a front end of the guide frame portion and be made from soft synthetic resin having more flexibility than the frame portion, wherein the grill shutter unit is configured such that when the shutter members are closed, a seal portion of the traveling-air guide member is pressed against an outer peripheral wall face of the traveling-air introductory port by pressure of traveling air shut off by the shutter members closed.
Owner:MAZDA MOTOR CORP

Vehicle-mounted generator

A vehicle-mounted generator is powered by relative wind produced by the combination of ambient wind and motion of the vehicle, or by movement of water when mounted on the hull of a water-borne vehicle. A rigid cylindrical housing forms an enclosed interior chamber. Wind asymmetrically enters the chamber through an inlet located on one side of a central longitudinal drive shaft, and exits through an outlet located at the top of the housing. A spiraling parabolic deck forms a floor of the interior chamber, and spirals around the central longitudinal shaft from the bottom of the housing to the outlet at the top. A turbine mounted on the drive shaft within the outlet converts energy of the exiting wind to mechanical energy. An electrical generator converts the mechanical energy into electrical energy for recharging a battery or powering an electric motor.
Owner:MCDAVID JR WILLIAM K

Noise reduction mechanism of fan device and molding method of porous damping material therefor

Porous damping material (40) is attached to an entire inner circumference of the fan shroud (20) opposing to an end of a fan (4) and is exposed to opposing space without using conventional perforated metal. Accordingly, jet noise caused by strong swirl between the fan (4) and the fan shroud (20) can be damped by the damping material (40) and impulsive sound scarcely occurs. Thus, both of the impulsive sound and the jet noise can be effectively damped, thereby securely reducing noise. The pours member (401) constituting the porous damping material (40) is a die-molding product made by a die (150) having a cavity (153).
Owner:KOMATSU LTD

Cooling system for a transmission mechanism

A cooling system for an engine transmission in a saddle type vehicle such as an all-terrain-vehicle. In one embodiment, the cooling system has an induction duct, connected to a belt case that houses a transmission, for inducting cooling air into the belt case. The system further includes a discharge duct connected to the belt case for exhausting the cooling air from the belt case, the discharge duct extending toward a rear fender of the vehicle. In addition, the system has an air exhaust aperture through which the cooling-air exits the discharge duct, the exhaust aperture located at an end of the discharge duct, the discharge duct generally forming an inverted "U" shape as viewed from a rear end of the vehicle, and the air exhaust aperture positioned so that the cooling air exiting the discharge duct does not directly strike the rear fender of the vehicle. The cooling system further has an induction box having a cooling-air induction port that allows the entrance of cooling-air into the induction box, the induction box being generally positioned in the transverse center of the vehicle, and the induction port being opened at a position near the bottom of a front fender of the vehicle.
Owner:SUZUKI MOTOR CORP

Integrated energy absorber and air flow management structure

An integrated assembly includes a bumper energy absorber section with crush lobes for abutting a bumper beam, an upper air shutter section with subassembled shutter members movable between closed and open positions, a first actuator mechanism for moving the shutter members between positions, an upper fascia support section with upper leg crush lobe therein above the upper air shutter section, a lower air shutter section with subassembled lower shutter members movable between closed and open positions, a second actuator mechanism for moving the lower shutter members between the positions; and a lower leg energy absorber section attached below the lower air shutter section and configured to abut (or replace) a face of a secondary pedestrian impact bar. The shutter members may be molded to a shutter frame using over molding technology rather than separately, manually assembled.
Owner:SHAPE CORP

Reversibly opening and closing a grille using active materials

An active grille comprises a plurality of blades and an active material in operative communication with the blades. The active material is in operative communication with the blades and is operative to change at least one attribute in response to an activation signal, wherein fluid flow through the grille changes with the change in the at least one attribute of the active material. By way of example, in vehicle applications, the blades of a grille disposed in front of an engine compartment can be selectively positioned to provide increased airflow through the radiator due to increases in engine coolant temperature. As such, the active grille can be configured to improve vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the active grille.
Owner:GM GLOBAL TECH OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products