Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3073 results about "Aerodynamic force" patented technology

The aerodynamic force is the force exerted on a body by the air (or some other gas) in which the body is immersed, and is due to the relative motion between the body and the gas. The aerodynamic force arises from two causes...

Air power engine assembly

The invention relates to an air-powered engine assembly, which comprises an air tank, an air valve, an air distributor, an intake pipe, camshafts, an intake duct, an exhaust control device, air cylinders, pistons, crankshafts, couplers, clutches, automatic gearboxes and differentials connected with the outside. The assembly is characterized in that the air valve, a constant pressure chamber and a pressure controller are arranged between the air tank and the air distributor; the air distributor is connected with a plurality of air cylinders on an air cylinder gasket; each air cylinder is connected with an exhaust chamber through an exhaust manifold; the exhaust chamber is provided with a turbine generator which is connected with a storage batter; the air cylinders are provided with the camshafts for controlling the air intake and exhaust of the air cylinders; the air cylinders are provided inside with the pistons for driving the crankshafts to rotate; the camshafts and the crankshafts are connected by chains; and the crankshafts are connected with the differentials through the couplers, the clutches and the gearboxes in turn. Therefore, doing work through air compression rather than fuel, the air-powered engine assembly has the advantages of avoiding waste gas discharge and air pollution, along with reliable operation, convenient operation, economical efficiency, practicality and so on. In addition, due to recycle of the waste gas for power generation, the air-powered engine assembly saves energy and reduces costs.
Owner:周登荣 +1

Carbon nanostructures and process for the production of carbon-based nanotubes, nanofibres and nanostructures

Continuous process for the production of carbon-based nanotubes, nanofibres and nanostructures, comprising the following steps: generating a plasma with electrical energy, introducing a carbon precursor and/or one or more catalysers and/or carrier plasma gas in a reaction zone of an airtight high temperature resistant vessel optionally having a thermal insulation lining, vaporizing the carbon precursor in the reaction zone at a very high temperature, preferably 4000° C. and higher, guiding the carrier plasma gas, the carbon precursor vaporized and the catalyser through a nozzle, whose diameter is narrowing in the direction of the plasma gas flow, guiding the carrier plasma gas, the carbon precursor vaporized and the catalyses into a quenching zone for nucleation, growing and quenching operating with flow conditions generated by aerodynamic and electromagnetic forces, so that no significant recirculation of feedstocks or products from the quenching zone into the reaction zone occurs, controlling the gas temperature in the quenching zone between about 4000° C. in the upper part of this zone and about 50° C. in the lower part of this zone and controlling the quenching velocity between 103 K/s and 106 K/s quenching and extracting carbon-based nanotubes, nanofibres and other nanostructures from the quenching zone, separating carbon-based nanotubes, nanofibres and nanostructures from other reaction products.
Owner:ТІМКАЛ SА +1

Leading edge construction for an aerodynamic surface and method of making the same

A leading edge structure for an aerodynamic surface includes a support structure made of fiber-reinforced synthetic material and a skin structure made of metal mounted on the support structure. The support structure includes an inner laminate, an outer laminate, and longitudinally extending tubes and channels arranged between the inner and outer laminates, as well as a synthetic foam filler material in the spaces between the tubes, channels, and laminates. The skin structure includes an outer skin having perforations, especially in the form of suction holes, an inner skin, and spacer members interconnected therebetween so as to form a substantially form-stable metal skin structure. Respective holes pass through the inner skin, the outer laminate, and the walls of the tubes and channels in order to communicate the suction hole perforations of the outer skin with the interior spaces within the tubes and channels. The skin structure is adhesively bonded to the support structure. In a method for making the leading edge structure, the prefabricated components of the support structure are laid up, molded and cured in a positive mold, the prefabricated components of the skin structure are formed and soldered together on a positive mold, and then the skin structure is adhesively bonded onto the support structure.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products