Hemostatic antibacterial nanometer film and preparation method thereof
A hemostatic antibacterial and nano-membrane technology, which is applied in medical formula, medical science, bandages, etc., can solve problems such as high closure strength, infection, and weak closure effect, and achieve convenient and comfortable use, good biological safety, and great promotion value Effect
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0023] The hemostatic antibacterial nanofilm provided by the present embodiment is composed of the following components by mass percentage:
[0024]
[0025] Wherein, the polymer matrix material is composed of one or more of polyurethane, polysaccharide (polysaccharide), silicone rubber, polyglycolic acid, polylactic acid, polyester; One or more components; the antibacterial factor is composed of one or more of nano-silver particles, silver ions, antibacterial peptides, and polylysine; the protective layer is composed of polyvinyl alcohol, cellulose, water-soluble One or several components of sexual polysaccharides.
[0026] The following is the preferred scheme for the preparation of the above-mentioned hemostatic antibacterial nano-film of the present embodiment, the specific circumstances are as follows:
[0027] Prepare an aqueous solution of alginic acid and chitosan, drop the obtained polysaccharide solution onto a single crystal silicon wafer, and perform spin coati...
Embodiment 2
[0029] The difference from Example 1 is that in this example, the polylactic acid is configured into a dichloromethane solution, and the obtained polylactic acid solution is added dropwise on the single crystal silicon wafer, and the parameters are: the rotation speed is 4000rpm, and the time is 30s. Spin coating to obtain a polymer matrix nanofilm accounting for 2.0% of the total mass; disperse 0.075% of the total mass of antimicrobial peptides and 0.075% of the total mass of calcium ions in water, add dropwise to the above polymer matrix nanofilm, and For: the rotation speed is 3000rpm, and the spin coating time is 10s to realize the loading of the factor; the polyvinyl alcohol aqueous solution accounting for 97.85% of the total mass is dripped onto the nano-film of the above loading factor, and the parameters are: the rotation speed is Spin coating at 6000rpm for 20s to obtain a polymer matrix nanofilm with a protective layer and a load factor. After the nano-film is dried,...
Embodiment 3
[0031] The difference from Example 1 is that in this example, polyurethane is dissolved in acetone to obtain a solution, which is dripped onto a single crystal silicon wafer, and spin-coated under the parameters: the rotation speed is 4000rpm, and the time is 30s. 1.5% polymer matrix nano-membrane; disperse 0.05% nano-silver and 0.05% calcium ions in water, add dropwise to the above polymer matrix nano-membrane, and the parameters are: the rotation speed is 3000rpm , and the time is 10s to carry out spin coating to realize the loading of the factor; the polyvinyl alcohol aqueous solution accounting for 98.4% of the total mass is dripped onto the nano-film of the above loading factor, and the parameters are: the rotation speed is 6000rpm, and the time is 20s Spin-coating is carried out under the environment to obtain a polymer matrix nano-membrane with a protective layer and a load factor. After the nano-film is dried, it is peeled off from the slide, cut into the desired shape...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com