Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1553results about How to "Strong mechanical properties" patented technology

Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof

The invention discloses a graphene / molybdenum disulfide (MoS2) compound nano material lithium ion battery electrode and a preparation method thereof. The electrode comprises the following components in percentage by mass: 75 to 85 percent of compound nano material serving as an active substance, of a graphene nano slice and MoS2, and 5 to 10 percent of acetylene black and 10 percent of polyvinylidene fluoride; and the mass ratio of the graphene nano slice to the MoS2 nano material in the compound nano material active substance is (1 to 1)-(4 to 1). The preparation method of the electrode comprises the following steps of: preparing an oxidized graphite nano slice by using graphite as a raw material by a chemical oxidization method; synthesizing by a one-step hydrothermal in-situ reduction method in the presence of the oxidized graphite nano slice to obtain a graphene nano slice / MoS2 compound nano material; and finally, preparing the electrode by using the graphene nano slice / MoS2 compound nano material as the active substance. The electrode has high electrochemical lithium storage reversible capacity and cyclic stabilization performance, and can be widely applied to new generation lithium ion batteries.
Owner:ZHEJIANG UNIV

Compound nano material of graphene and MoS2 and preparation method thereof

The invention discloses a compound nano material of graphene and molybdenum disulfide (MoS2) and a preparation method thereof. The compound material is formed by mixing graphene and a MoS2 nano material in a mass ratio of (1 to 1)-(4 to 1). The preparation method comprises the following steps of: preparing an oxidized graphite nano slice from graphite by a chemical oxidization method; then dissolving molybdate into deionized water so as to form 0.02 to 0.07M of solution; adding L-cysteine serving as a sulfur source and a reduction agent, wherein the mass ratio of the L-cysteine to the molybdate is (5 to 1)-(12 to 1); adding the oxidized graphite nano slice into the solution, and ultrasonically treating so that the oxidized graphite nano slice can be fully dispersed in the hydrothermal reaction solution; transferring the mixture into a hydrothermal reaction kettle and sealing; and synthesizing by a one-step hydrothermal method to obtain the compound nano material of graphene and MoS2, wherein the mass ratio of the graphene nano slice to the MoS2 is (1 to 1)-(4 to 1). The method has the characteristics of mild reaction condition and simple process. The compound nano material of graphene and MoS2 synthesized by the method can be widely used as electrode materials of new energy batteries, high-performance national lubricants, catalyst carriers and the like.
Owner:ZHEJIANG UNIV

Multi-component oxidation micro-electrolytic filler and preparation method thereof

The invention belongs to the technical field of environmental engineering wastewater treatment, and particularly relates to multi-component oxidized micro-electrolysis filler and a preparation method thereof. The multi-component oxidized micro-electrolysis filler is mainly prepared from the following components in percentage by mass: 50-60% of iron, 20-30% of activated carbon, 12-15% of adhesive and 3-5% of catalyst through mixing, wherein iron is iron scrap or iron powder with particle size not more than 80 mesh; and activated carbon is in a powder and has particle size not more than 100 mesh. The preparation method of the multi-component oxidized micro-electrolysis filler comprises uniformly mixing iron, activated carbon, the adhesive and the catalyst according to the ratio, adding water, stirring and aging, then carrying out extrusion molding to obtain molded filler, demolding to obtain a filler blank, after naturally drying, drying, sintering in the absence of air, and cooling thefiller blank to obtain the multi-component oxidized electrolysis filler. According to the invention, the hardening, dead pool, stoppage and other practical problems existing in the use of the traditional micro-electrolysis fillers are solved.
Owner:CHINA COAL TECH & ENG GRP HANGZHOU ENVIRONMENTAL PROTECTION INST

Communications apparatus

A versatile communications (comms) apparatus to provide a means to measure the audio (earphone) output of an electronic device (e.g. a music player in a smartphone), and/or to provide a means for wireless communications between a first electronic device (e.g. a smartphone) and a second electronic device (e.g. a hearing aid, pacemaker, etc). In some embodiments, the comms apparatus does not need power and in other embodiments, its power may be harvested from the first electronic device, or drawn from a battery that may be recharged by harvesting means or charged directly. The first electronic device typically includes an audio (earphone) output, a microphone input (with a voltage bias), a long-range communications transceiver (e.g. GSM), and where pertinent, a short-range transceiver (e.g. Bluetooth) and is internet enabled. In one embodiment, the comms apparatus provides a means where the audio output (earphone) of the electronic device is sampled by its microphone input, or by electronics in the comms apparatus. In other embodiments, the comms apparatus is an intermediary communications device between the first electronic device and the second electronic device. The communications therein may be simplex and/or duplex, via either the audio output (earphone), microphone input, short-range transceiver, and/or a combination thereof. The communications data (via the comms apparatus) may be transmitted elsewhere, including via the internet by means of the internet enabled electronic device.
Owner:ADVANCED ELECTROACOUSTICS PRIVATE

Lithium ion battery electrode made of graphene/SnS2 composite nanometer material and preparation method thereof

The invention discloses a lithium ion battery electrode made of a graphene/SnS2 composite nanometer material and a preparation method thereof. The lithium ion battery electrode is characterized in that the active substance of the electrode is the graphene/SnS2 composite nanometer material, and the other components of the electrode are acetylene black and polyvinylidene fluoride. The lithium ion battery electrode comprises the following components in percentage by weight: 75-85% of the composite nanometer material active substance, 5-10% of the acetylene black and 10% of the polyvinylidene fluoride; and the mass ratio of the graphene to SnS2 nanometer material in the composite nanometer material active substance is (1:1)-(4:1). The electrode preparation method disclosed by the invention comprises the following steps: preparing a graphite oxide nanometer sheet by taking graphite as a raw material by virtue of a chemical oxidation method; in the presence of the graphite oxide nanometer sheet, synthetizing to obtain the graphene/SnS2 composite nanometer material by virtue of a one-step hydrothermal in-situ reduction method; and finally, taking the graphene/SnS2 composite nanometer material as the active substance to prepare the electrode. The electrode disclosed by the invention has the advantages of higher electrochemical lithium storage capacity and excellent cyclical stability and can be widely used in the new generation of lithium ion batteries.
Owner:ZHEJIANG UNIV

Guided tissue regeneration membrane and its preparation method

The invention relates to a guided tissue regeneration membrane, which comprises a compact coating and a loose coating, wherein the compact coating is composed of collagen-I or collagen-I composite hyaluronic acid; and the loose coating is composed of collagen-I or collagen-I composite calcium salt. A preparation method of the guided tissue regeneration membrane comprises the following steps of: preparing a collagen solution or a collagen and hyaluronic acid mixed solution by the use of acetic acid; injecting the solution into a self-made die, and drying it in the air to prepare the compact coating; injecting the collagen solution or a mixed liquor of the collagen solution and calcium salt onto the compact coating, and uniformly spreading; precooling the die at ultralow temperature, followed by freeze-drying to prepare the guided membrane with the compact coating and loose coating structure; carrying out vacuum high-temperature crosslinking and chemical crosslinking; and finally cleaning. The regeneration membrane has good histocompatibility and mechanical strength, low antigenicity and strong guided tissue regeneration capability. Its degradation rate in vivo is 3-8 months. The method is easy to operate, is suitable for automatic and continuous large-scale production, and solves the problems of large size of collagen membrane and material uniformity during industrial production.
Owner:SHENZHEN LANDO BIOMATERIALS

Graphene/MoS2 graphene and amorphous carbon composite material and preparation method thereof

The invention discloses a graphene nanometer sheet/MoS2 graphene nanometer sheet and amorphous carbon composite material and a preparation method thereof. The composite material is characterized by being composed of the following components in percentage by weight: 4.2-15% of graphene nanometer sheet, 4.2-65% of MoS2 graphene nanometer sheet and the balance of amorphous carbon, wherein the molar ratio of the graphene nanometer sheet to the MoS2 graphene nanometer is (1:1)-(4:1). The preparation method comprises the following steps: preparing graphite into graphite nanometer sheets by a chemical oxidation method; then evenly dispersing the oxidized graphite nanometer sheets into a solution containing molybdate, thioacetamide or thiourea and glucose; obtaining an intermediate product by virtue of hydrothermal reaction; and carrying out heat treatment on the intermediate product at high temperature to obtain the graphene nanometer sheet/ MoS2 graphene nanometer sheet and amorphous carbon composite material. The method disclosed by the invention has the characteristics of moderate reaction condition and simple process. The graphene nanometer sheet/ MoS2 graphene nanometer sheet and amorphous carbon composite material, which is synthetized by the invention, can be widely applied by serving as an electrochemical storage lithium electrode material, an electrochemical storage magnesium electrode material and a catalyst carrier.
Owner:ZHEJIANG UNIV

Method for transferring graphene film to substrate

The invention relates to a method for transferring a graphene film to a substrate, belonging to the field of semiconductor film. The method comprises the following steps: spin-coating an organic colloid on the surface of the graphene film, drying and hardening the film; adhering adhesive tape to the surface of the organic colloid; then putting a substrate material adhered the adhesive tape into a corrosive solution to corrode a metal catalyst layer under the graphene film; after the corrosion is finished, taking out the adhesive tape, the organic colloid and the graphene film which are adhered to the adhesive tape from the solution; uniformly spreading onto a target substrate, removing the adhesive tape by using a corresponding method, then dissolving the organic colloid away to finally finish the transfer of the graphene film to the target substrate. The method for transferring the graphene film to the substrate, disclosed by the invention, is simple and easy to implement, and can conveniently transfer the graphene film with a large area to any substrate material without causing a large damage. The method has the advantages of being large in transfer area, simple in processing steps, convenient in operation and can be combined with semiconductor techniques to prepare graphene semiconductor devices.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Cleaning method

The invention provides a method for the cleaning of a soiled substrate, the method comprising treating the substrate with a non-polymeric solid particulate cleaning material and wash water, the treatment being carried out in an apparatus comprising a drum comprising perforated side walls and having a capacity of between 5 and 50 litres for each kg of fabric in the washload, wherein the solid particulate cleaning material comprises a multiplicity of non-polymeric particles at a particle to fabric addition level of 0.1:1-10:1 by mass, each of the particles being substantially cylindrical or spherical in shape, and wherein the drum comprising perforated side walls is rotated at a speed which generates G forces in the range of from 0.05 to 900 G. The non-polymeric particles may comprise particles of glass, silica, stone, wood, or any of a variety of metals or ceramic materials. Preferably the solid particulate cleaning material additionally comprises a multiplicity of polymeric particles each of which is substantially cylindrical or spherical in shape. Preferably, at least one detergent is employed in the cleaning process. The invention provides optimum cleaning performance as a result of improved mechanical interaction between substrate and cleaning media and is preferably used for the cleaning of textile fabrics. The method allows for significant reductions in the consumption of detergents, water and energy when compared with the conventional wet cleaning of textile fabrics, and also facilitates reduced washing-related textile fabric damage. The invention also envisages a cleaning composition comprising a solid particulate cleaning composition and at least one additional cleaning agent.
Owner:XEROS LTD

Method of preparing composite preservative film or coating from chitosan and alcohol soluble corn protein

The invention relates to a method of preparing a composite preservative film or coating from chitosan and alcohol soluble corn protein. The method mainly comprises the following steps: (1) preparing 2wt% chitosan solution; (2) preparing 1-10wt% ethanol aqueous solution of alcohol soluble corn protein; (3) mixing the solutions prepared in the steps (1) and (2) in a volume ratio of 1:9 to 9:1 (v/v) to obtain a composite film solution; (4) flow casting the composite film solution obtained in step (3) and drying to obtain a film; or sequentially overlaying the solutions prepared in the steps (1) and (2) to obtain a double-layer preservative film. The chitosan-alcohol soluble corn protein composite preservative film or coating prepared in the invention is not only improved in the moisture resistance and ultraviolet resistance of a chitosan film, but also improved in the barrier property, mechanical properties and antibacterial activity of a alcohol soluble corn protein film, and is degradable, edible, etc. When the chitosan-alcohol soluble corn protein composite preservative film or coating prepared in the invention is used to package or wrap foods such as meat, oils and fats, fruits and vegetables, the quality guarantee period thereof can be effectively prolonged. Thus, the method has an extensive application prospect.
Owner:GUANGXI UNIV

Preparation method of nano-structure oil-water separation net membrane with self-cleaning and underwater super-oleophobic characteristics

The invention discloses a preparation method of a metal net membrane with self-cleaning and underwater super-oleophobic characteristics. The metal net membrane can achieve efficient oil-water separation and self cleaning. A traditional oil-water separation membrane has the defects that a preparation technology is complex, regeneration is difficult, and repeated using can not be achieved. With a copper net being a substrate, an anodic oxidation method is adopted for generating a copper hydroxide nanowire array, multiple layers of titanium dioxide are deposited on the nanowire array through layer-by-layer self-assembly, and the copper net membrane covered by a copper oxide/titanium dioxide composite membrane layer is generated through roasting. The net membrane is high in mechanical performance and resistant to high heat, has the super-hydrophilic and underwater super-oleophobic characteristics, can efficiently separate an oil-water mixture and meanwhile can perform self cleaning under photocatalysis active illumination of the titanium dioxide layer to achieve regeneration and repeated using. Compared with the preparation technology of the existing oil-water separation membrane, the method facilitates scale expansion, preparation is easy, raw materials are environmentally friendly, the cost is low, cyclic reuse can be achieved, and the net membrane is a novel oil-water separation net membrane which is more environmentally friendly and affordable.
Owner:SICHUAN UNIV

Graphene nano sheet and SnS2 composite nano material and synthesis method thereof

The invention discloses a graphene nano sheet and SnS2 composite nano material and a synthesis method thereof. The composite material is characterized by being formed by compounding a graphene nano sheet and a SnS2 nano material, wherein the substance amount ratio of the graphene nano sheet to the SnS2 nano material is 1:1-4:1. The preparation method comprises the following steps of: preparing a graphite oxide nano sheet from graphite by using a chemical oxidation method, then dissolving L-cysteine into deionized water, adding stannic chloride, and dissolving the stannic chloride with full stirring, wherein the molar ratio of the L-cysteine to the stannic chloride in the solution is 6:1-12:1; and adding the graphite oxide nano sheet into the solution, performing ultrasonic treatment so that the graphite oxide nano sheet is fully dispersed in the hydrothermal reaction solution, and synthesizing the graphene nano sheet and SnS2 composite nano material by a one-step hydrothermal method, wherein the mass ratio of the graphene nano sheet to the SnS2 nano material in the composite material is 1:1-4:1. The method has the characteristics of mild reaction condition and simple process. The synthesized graphene nano sheet and SnS2 composite nano material serving as an electrode material of a new energy battery or serving as other materials has wide application.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products