Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods for producing coated phosphor and host material particles using atomic layer deposition methods

a technology of phosphor and host material, applied in the field of phosphor particles, can solve the problems of revealing defects in the coating at the break area, unable to meet the requirements of cvd or sol-gel techniques, and unable to achieve the full satisfaction of cvd and sol-gel techniques

Inactive Publication Date: 2007-12-27
WEIMER ALAN W +4
View PDF3 Cites 109 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0052]The thickness of the applied films typically will be in the range of about 1 to about 500 nm. An advantage of the invention is that the ALD process is capable of forming highly uniform films at very small thicknesses. Thus, a preferred film thickness is from about 5 to about 100 nm. It has been found that films of such thicknesses can perform very well as passivating films. A more preferred film thickness is from about 10-100 nm, and an especially preferred film thickness is from 15-75 nm. Film thickness is controlled via the number of reaction cycles that are performed.
[0053]The particulate is preferably non-agglomerated after the inorganic material is deposited. By “non-agglomerated”, it means that the particles do not form significant amounts of agglomerates during the process of coating the substrate particles. Particles are considered to be non-agglomerated if (a) the average particle size does not increase more than about 5%, preferably not more than about 2%, more preferably not more than about 1% (apart from particle size increases attributable to the coating itself) as a result of depositing the coating, or (b) if no more than 2 weight %, preferably no more than 1 weight % of the particles become agglomerated during the process of depositing the inorganic material.
[0054]In preferred embodiments, the deposits of inorganic material form a conformal coating. By “conformal” it is meant that the thickness of the coating is relatively uniform across the surface of the particle (so that, for example, the thickest regions of the coating are no greater than 3X (preferably no greater than 2X, especially no greater than 1.5X) the thickness of the thinnest regions), so that the surface shape of the coated substrate closely resembles that of the underlying substrate surface. Conformality is determined by methods such as transmission electron spectroscopy (TEM) that have resolution of 10 nm or below. Lower resolution techniques cannot distinguish conformal from non-conformal coatings at this scale. The desired substrate surface is preferably coated substantially without pinholes or defects.
[0055]A wide range of reaction schemes can be used to provide desirable films on the particle surfaces. Some exemplary classes of reaction schemes are described below.
[0056]Oxide and nitride films can be prepared on particles having surface hydroxyl or amine (M-N—H) groups using a binary (AB) reaction sequence as follows. The asterisk (*) indicates the atom that resides at the surface of the particle or coating, and Z represents oxygen or nitrogen. M1 is an atom of a metal (or semimetal such as silicon), particularly one having a valence of 3 or 4, and X is a displaceable nucleophilic group. The reactions shown below are not balanced, and are only intended to show the reactions at the surface of the particles.M-Z—H*+M1Xn→M-Z-M1X*+HX   (A1)M-Z-M1X*+H2O→M-Z-M1 OH*+HX   (B1)In reaction A1, reagent M1Xn reacts with one or more M*-Z-H groups on the surface of the particle to create a new surface group having the form -M1-X. M1 is bonded to the particle through one or more Z atoms. The -M1-X group represents a site that can react with water in reaction B1 to regenerate one or more hydroxyl groups. The hydroxyl groups formed in reaction B1 can serve as functional groups through which reactions A1 and B1 can be repeated, each time adding a new layer of M1 atoms. Note that in some cases (such as, e.g., when M1 is silicon, zirconium, titanium, yttrium or aluminum) hydroxyl groups can be eliminated as water, forming M1-O-M1 bonds within or between layers. This condensation reaction can be promoted if desired by, for example, annealing at elevated temperatures and / or reduced pressures.
[0057]Binary reactions of the general type described by equations A1 and B1, where M1 is silicon, are described more fully in J. W. Klaus et al, “Atomic Layer Controlled Growth of SiO2 Films Using Binary Reaction Sequence Chemistry”, Appl. Phys. Lett. 70, 1092 (1997) and O. Sheh et al., “Atomic Layer Growth of SiO2 on Si(100) and H2O using a Binary Reaction Sequence”, Surface Science 334, 135 (1995), both incorporated herein by reference. Binary reactions of the general type described by equations A1 and B1, where M1 is aluminum, are described in A. C. Dillon et al, “Surface Chemistry of Al2O3 Deposition using Al(CH3)3 and H2O in a Binary reaction Sequence”, Surface Science 322, 230 (1995) and A. W. Ott et al., “Al2O3 Thin Film Growth on Si(100) Using Binary Reaction Sequence Chemistry”, Thin Solid Films 292, 135 (1997). Both of these references are incorporated herein by reference. General conditions for these reactions as described therein can be adapted to construct SiO2 and Al2O3 coatings on particulate materials in accordance with this invention.

Problems solved by technology

In addition to having much larger diameters than are wanted, these aggregates often tend to break apart, revealing defects in the coating at the break areas.
The underlying particles are subject to attack from water, oxidants and other materials at the places where these defects occur.
Neither CVD nor sol-gel techniques are entirely satisfactory, as agglomerates tend to form readily in these processes.
In addition, these methods require relatively large amounts of raw materials, as only a portion of the applied reactants actually become applied to the surface of the phosphor particles.
CVD and sol-gel coating methods are particularly unsuitable for coating these smaller particles.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0067]Zinc sulfide-based phosphor particles having a particle size of approximately 26±1 micron are placed into a fluidized bed reactor. The fluidized bed column is tubular and constructed of stainless steel. It is heated using an external furnace that surrounds the reactor. The column has an inside diameter of 6 cm and a height of 60 cm. It is equipped with a distributor constructed of 10 micron average pore size porous stainless steel. The upper head of the fluidized bed reactor contains four internal 10 micron pore size porous metal filters that prevent phosphor particles from being entrained out of the fluidized bed. Protruding from the center of the fluidized bed upper head is a long stirring device that extends to the distributor plate where it sweeps across the distributor plate surface and up the outside wall. It is connected to an external drive via a magnetic coupling. Four internal filters are on a manifold that connects to a pipe leading to a vacuum pump (Alcatel model 2...

example 2

[0073]The method of Example 1 is repeated with the exception that the number of reaction cycles is increased to 175. An alumina film thickness of approximately 20 nanometers thickness is produced. Some of the coated particles are placed in a silver nitrate solution. The particles turn black after 2 days, thus indicating that the silver nitrate penetrates the 20 nanometer alumina film much more slowly than it does the 2.5 nanometer film of Example 1. A lighting test lamp device fabricated of some of the freshly coated particles shines more brightly than a like lamp made using conventionally coated ZnS based phosphor materials.

example 3

[0074]The method of Example 1 is repeated with the exception that the number of reaction cycles is increased to 550. An alumina film thickness of approximately 60 nanometers thickness is produced on the surface of the phosphor particles. Some of the coated particles are placed in a silver nitrate solution as before, but show no evidence of reaction even after one month. As before, a lamp produced from these particles shines more brightly than one made using conventionally coated phosphor particles.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
diametersaaaaaaaaaa
Login to View More

Abstract

Layers of a passivating material and / or containing luminescent centers are deposited on phosphor particles or particles that contain a host material that is capable of capturing an excitation energy and transferring it to a luminescent center or layer. The layers are formed in an ALD process. The ALD process permits the formation of very thin layers. Coated phosphors have good resistance to ambient moisture and oxygen, and / or can be designed to emit a distribution of desired light wavelengths.

Description

BACKGROUND OF THE INVENTION[0001]This invention relates to phosphor particles having ultrathin coatings on their surfaces and to methods for making and using such coated particles.[0002]Phosphors are used in flat panel plasma displays (FPDs), cathode ray tubes, x-ray imaging devices, field emission devices, fluorescent lighting fixtures, and a variety of other applications to generate visual images or simply provide light. Although a wide variety of phosphor materials are known for use in these applications, those materials all have in common the ability to generate a characteristic light in response to exposure to an excitation energy source. The excitation energy source may be, for example, a photon (photoluminescence, or PL), high energy electron beam (cathodic luminescence, or CL), an applied electrical field (electroluminescence, or EL), or applied heat (thermoluminescence). Electroluminescent phosphors are of particular interest for flat panel display applications.[0003]Flat p...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): B32B19/00G11B5/64B32B9/00B05D7/00C23C16/00
CPCC23C16/442C23C16/403Y10T428/2993C23C16/4417C23C16/405C23C16/45525C09K11/025Y10T428/265Y10T428/2982C23C16/45555Y10T428/2991C09K11/56
Inventor WEIMER, ALAN W.GEORGE, STEVEN M.BUECHLER, KAREN J.SPENCER, JOSEPH A.MCCORMICK, JAROD
Owner WEIMER ALAN W
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products