Methods for producing coated phosphor and host material particles using atomic layer deposition methods
a technology of phosphor and host material, applied in the field of phosphor particles, can solve the problems of revealing defects in the coating at the break area, unable to meet the requirements of cvd or sol-gel techniques, and unable to achieve the full satisfaction of cvd and sol-gel techniques
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0067]Zinc sulfide-based phosphor particles having a particle size of approximately 26±1 micron are placed into a fluidized bed reactor. The fluidized bed column is tubular and constructed of stainless steel. It is heated using an external furnace that surrounds the reactor. The column has an inside diameter of 6 cm and a height of 60 cm. It is equipped with a distributor constructed of 10 micron average pore size porous stainless steel. The upper head of the fluidized bed reactor contains four internal 10 micron pore size porous metal filters that prevent phosphor particles from being entrained out of the fluidized bed. Protruding from the center of the fluidized bed upper head is a long stirring device that extends to the distributor plate where it sweeps across the distributor plate surface and up the outside wall. It is connected to an external drive via a magnetic coupling. Four internal filters are on a manifold that connects to a pipe leading to a vacuum pump (Alcatel model 2...
example 2
[0073]The method of Example 1 is repeated with the exception that the number of reaction cycles is increased to 175. An alumina film thickness of approximately 20 nanometers thickness is produced. Some of the coated particles are placed in a silver nitrate solution. The particles turn black after 2 days, thus indicating that the silver nitrate penetrates the 20 nanometer alumina film much more slowly than it does the 2.5 nanometer film of Example 1. A lighting test lamp device fabricated of some of the freshly coated particles shines more brightly than a like lamp made using conventionally coated ZnS based phosphor materials.
example 3
[0074]The method of Example 1 is repeated with the exception that the number of reaction cycles is increased to 550. An alumina film thickness of approximately 60 nanometers thickness is produced on the surface of the phosphor particles. Some of the coated particles are placed in a silver nitrate solution as before, but show no evidence of reaction even after one month. As before, a lamp produced from these particles shines more brightly than one made using conventionally coated phosphor particles.
PUM
Property | Measurement | Unit |
---|---|---|
thickness | aaaaa | aaaaa |
thickness | aaaaa | aaaaa |
diameters | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com