Carbon resistance superfine nano wolfram carbide material as well as preparation method and application thereof

A technology of ultra-fine nanometer and tungsten source, applied in chemical instruments and methods, carbide, nanotechnology, etc., can solve the problems of particle agglomeration and large particle size, and achieve uniform particle size distribution, catalyst performance improvement, catalytic efficiency and performance Enhanced effect

Inactive Publication Date: 2014-05-28
ZHEJIANG UNIV OF TECH +1
View PDF3 Cites 14 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the particles of the obtained WC material are still relatively large, and the reason is still the particle agglomeration of ultrafine nanoparticles during the high temperature process.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Carbon resistance superfine nano wolfram carbide material as well as preparation method and application thereof
  • Carbon resistance superfine nano wolfram carbide material as well as preparation method and application thereof
  • Carbon resistance superfine nano wolfram carbide material as well as preparation method and application thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0035] Add 0.08g of ammonium metatungstate to 50ml of distilled water and mix it with a solution made of 25ml of ethanol, 0.2ml of concentrated ammonia solution and 0.05g of sodium dodecylbenzenesulfonate. After stirring, add 0.5g of resorcinol and stir After 30 minutes, 0.5ml of formaldehyde was added, stirred at room temperature for 24 hours, then transferred to a hydrothermal reaction kettle and kept in a blast drying oven at 120°C for 15 hours, and the obtained compound was dried in a blast drying oven at 80°C. In the high-temperature tube furnace, the carbonization gas is 200ml / min of CO gas, raised from room temperature to 400°C at a rate of 5°C / min, kept at 400°C for 1 hour, and then heated to 900°C at the same heating rate for 6 hours. After cooling to room temperature, the obtained powder is the carbon resistance ultrafine nano WC material. It looks like figure 1 . WC components dispersed well, but partly showed agglomeration phenomenon. The particle size of highly...

Embodiment 2

[0037]Add 0.02g of ammonium metatungstate to 10ml of distilled water and mix it with a solution made of 5ml of ethanol, 0.05ml of concentrated ammonia solution and 0.005g of sodium dodecylbenzenesulfonate. After stirring, add 0.1g of resorcinol and stir After 30 minutes, 0.1ml of formaldehyde was added, stirred at room temperature for 8 hours, then transferred to a hydrothermal reaction kettle and kept in a blast oven at 80°C for 12 hours, and the obtained polymer was dried in a blast oven at 80°C. In the high-temperature tube furnace, the carbonization gas is 50ml / min of CO gas, raised from room temperature to 400°C at a rate of 1°C / min, kept at 400°C for 1 hour, and then heated to 900°C at the same heating rate for 2 hours. After cooling to room temperature, the obtained powder is the carbon resistance ultra-fine nano-WC material, but the output is less. The particle size of WC is about 2nm.

Embodiment 3

[0039] Add 0.02g of ammonium metatungstate to 20ml of distilled water and stir, then add to the solution made of 8ml of ethanol, 0.1ml of concentrated ammonia solution and 0.01g of sodium dodecylbenzenesulfonate, stir and add 0.25g of resorcinol and stir After 30 minutes, 0.35ml of formaldehyde was added, stirred at room temperature for 24 hours, then transferred to a hydrothermal reaction kettle and kept in a blast drying oven at 100°C for 12 hours, and the obtained polymer was dried in a blast drying oven at 80°C. In a high-temperature tube furnace, the temperature rises from room temperature to 400°C at a rate of 2.5°C / min, and the carbonization gas is 150ml / min of CO gas. After keeping at 400°C for 1 hour, it is heated to 900°C at the same heating rate for 4 hours. After cooling to room temperature, the obtained powder is the carbon resistance ultrafine nano WC material. It looks like figure 2 . The carbon component particle size reaches 250nm. The particle size of WC ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
particle diameteraaaaaaaaaa
particle diameteraaaaaaaaaa
particle sizeaaaaaaaaaa
Login to view more

Abstract

The invention discloses a carbon resistance superfine nano wolfram carbide (WC) material as well as a preparation method and application thereof. The preparation method of the carbon resistance superfine nano WC material comprises the following steps: (1) adding a deionized water solution of a wolfram source in a solution prepared from ethanol, stronger ammonia water and a surfactant, wherein the wolfram source is ammonium metatungstate, sodium tungstate or tungsten chloride, the surfactant is sodium dodecyl benzene sulfonate, hexadecyl trimethyl ammonium bromide or P123, stirring the solution uniformly, adding resorcinol to the solution, stirring uniformly and then adding formaldehyde, and stirring for 8-28 hours at the room temperature to obtain the mixed solution; (2) performing a hydrothermal reaction on the mixed solution, and drying the solution to obtain a mixed polymer; (3) performing high-temperature carbonization on the mixed polymer in a CO atmosphere to obtain the carbon resistance superfine nano WC material. The WC material can enable the WC particles to keep stable in the high temperature process without secondary agglomeration; the WC material can be taken as an electrocatalyst to be applied to an electrocatalysis nitroreduction reaction, or can also be taken as a carrier to prepare a platinum-carried catalyst, and the prepared platinum-carried catalyst can be applied to anode catalysis of a methanol fuel cell.

Description

(1) Technical field [0001] The invention relates to an ultrafine nanometer tungsten carbide material as well as its preparation method and application. (2) Background technology [0002] Catalysts play a very important role in the chemical industry, and researchers at home and abroad have done a lot of research on the development of new catalysts. In terms of increasing the activity of catalysts, the current research directions are mainly focused on increasing the specific surface area of ​​the active component or reducing the particle size of the active component. [0003] Tungsten carbide (Tungsten carbide, WC) is a non-precious metal material with excellent performance and has platinum-like catalytic activity. It has shown certain catalytic performance in the fields of chemical catalysis and electrocatalysis, such as fuel cells, catalytic hydrogenation Wait. It is worth noting that WC also has unique properties to be a good electrocatalyst, such as: better acid resistan...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): C01B31/34B01J27/22H01M4/92B82Y40/00C01B32/949
CPCC09C1/48C01B32/949H01M4/925Y02E60/50
Inventor 马淳安褚有群毛信表陈赵扬施梅勤
Owner ZHEJIANG UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products