Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Preparation method of medical porous metal implanting material

A technology for implant materials and porous metal, which is applied in the field of preparation of medical metal implant materials, can solve the problems affecting the processing and mechanical properties of porous tantalum materials, such as ductility, compressive strength, and insufficient bending strength, so as to improve biocompatibility and biological safety, good pore size uniformity of the finished product, and uniform pore distribution

Active Publication Date: 2012-11-28
CHONGQING RUNZE PHARM CO LTD
View PDF3 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, porous tantalum, which is used as a medical implant material for compact bone tissue such as dental bone, has obvious deficiencies in mechanical properties such as ductility, compressive strength, and bending strength, and will affect subsequent research on porous tantalum. Processing of the material itself, such as cutting of molded parts, etc.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Preparation method of medical porous metal implanting material

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0023] Embodiment 1: Take paraffin wax, tantalum powder and ethyl cellulose with an average particle size less than 43 microns and an oxygen content of less than 0.1% and mix them uniformly to form a mixed powder, wherein paraffin wax accounts for 8%, ethyl cellulose accounts for 27%, tantalum powder accounts for 65%, all in volume percentage. Granulation: The mixed powder is granulated into round particles with a particle diameter of 10-13 μm at a working temperature of 510-520° C. and a working pressure of 12-13 MPa. Injection molding: the temperature for injecting the round particles into the mold is 465-490° C. and the pressure is 83-85 MPa. Demolding time: 6~7S. Degreasing treatment: vacuum degree 10 -4 Pa, rise from room temperature to 400°C at a rate of 1-3°C / min, hold for 60-120 minutes, rise from 400°C to 600-800°C at a rate of 1.5-2.5°C / min, and hold for 180-240 minutes. Vacuum sintering: vacuum degree is 10 -4 Pa~10 -3 Pa, heat up to 1800°C at 13°C / min, hold fo...

Embodiment 2

[0025] Embodiment 2: Weigh polyvinyl alcohol, tantalum powder with an average particle size less than 43 microns and an oxygen content of less than 0.1%, and sodium bicarbonate and mix them uniformly to form a mixed powder, wherein polyvinyl alcohol accounts for 6%, sodium bicarbonate accounts for 29%, tantalum Powder accounted for 65%, all in volume percentage. Granulation: The mixed powder was granulated into round particles with a particle diameter of 20 μm at a working temperature of 450° C. and a working pressure of 15 MPa. Injection molding: the temperature of injecting the round particles into the mold is 540° C. and the pressure is 90 MPa. Demolding time: 9S. Degreasing treatment: vacuum degree 10 -4 Pa, raise the temperature from room temperature to 400°C at a heating rate of 1°C / min, and hold for 60 minutes; then raise the temperature from 400°C to 800°C at a heating rate of 2.5°C / min, and hold for 180 minutes. Vacuum sintering: Sintering step: vacuum degree is 10...

Embodiment 3

[0027] Embodiment 3: take by weighing zinc stearate, average particle diameter less than 43 micron oxygen content less than 0.1% tantalum powder and methyl cellulose and mix uniformly into mixed powder, wherein zinc stearate accounts for 10%, methyl cellulose accounts for 10%. 23%, tantalum powder accounted for 67%, both by volume percentage. Granulation: The mixed powder was granulated into circular particles with a particle diameter of 10 μm at a working temperature of 650° C. and a working pressure of 12 MPa. Injection molding: the temperature of injecting the round particles into the mold is 380° C. and the pressure is 72 MPa. Demolding time: 6S. Degreasing treatment: vacuum degree 10 -4 Pa, from room temperature to 400°C at a heating rate of 3°C / min, and hold for 120 minutes; then at a heating rate of 1.5°C / min from 400°C to 750°C, holding time for 240 minutes; sintering: vacuum degree of 10 -3 Pa, heat up to 1500°C at 10°C / min, hold for 120min, cool with the furnace t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
compressive strengthaaaaaaaaaa
elastic modulusaaaaaaaaaa
tensile strengthaaaaaaaaaa
Login to View More

Abstract

The invention discloses a preparation method of a medical porous metal implanting material. The preparation method comprises the steps of: mixing tantalum powder, pore-forming agent and forming agent to mixed powder; and carrying out granulation, mould-injection forming, demoulding, degreasing, sintering and heat treatment to obtain the medical porous metal implanting material which is used for replacing tooth bone tissues, wherein the pore-forming agent comprises one or more of sodium bicarbonate, urea, sodium chloride, methylcellulose and ethyl cellulose; the forming agent comprises one or more of polyvinyl alcohol, stearic acid, zinc stearate, paraffin and synthetic rubber; and the degreasing process comprises the steps of: gradually raising the temperature to 400-800 DEG C at a speed of 0.5-3 DEG C / min, introducing in argon to form protection atmosphere and holding the temperature for 60-240min. According to the preparation method provided by the invention, the sintering and heat treatment steps are effectively improved, so that the mechanical property of a prepared porous tantalum material is greatly improved and the porous tantalum material is particularly suitable for serving as a medical implanting material for replacing the tooth bone tissues of human body.

Description

technical field [0001] The invention relates to a preparation method of a medical metal implant material, in particular to a preparation method of a medical porous metal implant material. Background technique [0002] Porous medical metal implant materials have important and special uses in the treatment of bone tissue trauma, femoral tissue necrosis, and replacement of dense bone tissue such as dental bone. The common materials of this type include porous metal stainless steel and porous metal titanium. As a porous implant material used in the treatment of bone tissue trauma and femoral tissue necrosis, its porosity should reach 30-80%, and the pores should be all connected and evenly distributed, or it should be consistent with the growth of human bone tissue as needed. , and reduce the weight of the material itself, so that it is suitable for human implantation. [0003] As for the refractory metal tantalum, due to its excellent biocompatibility, its porous material is e...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): C22C1/08C22C27/02A61L27/04A61L27/56
CPCB22F2998/10A61L27/047A61L2400/08A61L27/04A61L27/56B22F3/1121C22C1/08C22C27/02B22F1/10B22F3/225B22F3/10
Inventor 叶雷
Owner CHONGQING RUNZE PHARM CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products