Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40results about "Generic and host data combination" patented technology

Pixel-density augmentation and adjustment with minimum data, in an incremental printer

One invention form is a method using all input data for one or preferably plural colorants, one time to control colorant deposition in forming a pixel array on a printing medium, and at least one other time to control deposition of more of the same colorants. At least one "applying" includes choosing data-array pixels to deposit added colorant. The two data-usage times can be associated directly with depositing colorant in respective printer passes; or may be done at (or near) rendition, sending output data to printmasking for pass allocation. Selection preferably includes setting maximum density on the medium-and choosing locations for that density, best by analyzing data to find locally dense areas, e. g. counting neighboring pixels. Selecting also includes defining locations to receive particular density, and creating additional density levels based on densities in the data array. Another method form includes defining an augmentation array and applying it to control part of colorant deposition. Preferably also included is applying the original array to control other deposition of colorant. Applying the augmentation array preferably increases colorant deposition, relative to applying the original array, by less than 100% with non-linear response to data.
Owner:HEWLETT PACKARD DEV CO LP

Printing system and method

A image is printed from a source of drawing instructions. The image is reducible to pixels arranged in a plurality of ranked image lines. The system employs a storage device having compressed and uncompressed regions. Each region has a designated capacity and each is arranged to store pixels of one or more of the plurality of image lines. A drawing processor is coupled to the storage device and can be coupled to the source of drawing instructions for responding thereto. This drawing processor can store new pixels in the storage device for successively selected ones of the image lines. The drawing processor has a conditional device, a decompression device and an insertion device. The conditional device can compressively encode and move from the uncompressed region to the compressed region, a remote one of the image lines, if: a) the selected one of the image lines is in the compressed region, and b) the uncompressed region has reached its designated capacity. The decompression device can expansively decode the selected one of the image lines, if located in the compressed region. The insertion device can insert one or more new pixels according to the drawing instructions into the selected one of the image lines by storing the selected one in the uncompressed region. The printing system also has a printing engine coupled to the storage device for printing the plurality of image lines in rank order, decompressing compressed ones of the image lines from the compressed region before printing.
Owner:ELECTRONICS FOR IMAGING

Printing system and method

A image is printed from a source of drawing instructions. The image is reducible to pixels arranged in a plurality of ranked image lines. The system employs a storage device having compressed and uncompressed regions. Each region has a designated capacity and each is arranged to store pixels of one more of the plurality of image lines. A drawing processor is coupled to the storage device and can be coupled to the source of drawing instructions for responding thereto. This drawing processor can store new pixels in the storage device for successively selected ones of the image lines. The drawing processor has a conditional device, a decompression device and an insertion device. The conditional device can compressively encode and move from the uncompressed region to the compressed region, a remote one of the image lines, if: a) the selected one of the image lines is in the compressed region, and b) the uncompressed region has reached its designated capacity. The decompression device can expansively decode the selected one of the image lines, if located in the compressed region. The insertion device can insert one or more new pixels according to the drawing instructions into the selected one of the image lines by storing the selected one in the uncompressed region. The printing system also has a printing engine coupled to the storage device for printing the plurality of image lines in rank order, decompressing compressed ones of the image lines from the compressed region before printing.
Owner:ELECTRONICS FOR IMAGING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products