Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Issue defect augmentation and repair with in vitro cultured fibroblasts

a technology of fibroblasts and in vitro culture, applied in the direction of skeletal/connective tissue cells, prosthesis, peptide/protein ingredients, etc., can solve the problems of inability to achieve long-term culture and proliferation of cells in such systems, lack of intact, in vivo tissue characteristics, and rapid abandonment of procedures. , to achieve the effect of effective treatment of vocal cord paralysis and/or damag

Inactive Publication Date: 2005-12-08
KLEINSEK DON A
View PDF59 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023] The use of autologous cultured fibroblasts derived from the dermis, fascia, connective tissue, or lamina propria mitigates the possibility of an immunogenic reaction due to a lack of tissue histocompatibility. This provides vastly superior post-surgical results. In a preferred embodiment of the present invention, fibroblasts of connective tissue, dermal, or facial origin as well as adipocytes are derived from full-thickness biopsies of the skin. Similarly, lamina propria tissue or fibroblasts derived from the lamina propria are obtained from vocal cord biopsies. It should be noted that the aforementioned tissues are derived from the individual who will subsequently undergo the surgical procedure, thus mitigating the potential for an immunogenic reaction. These tissues are then expanded in vitro utilizing standard tissue culture methodologies.
[0024] Additionally, the present invention further provides a methodology of rendering the cultured cells substantially free of potentially immunogenic serum-derived proteins by late-stage passage of the cultured fibroblasts, lamina propria tissue, or adipocytes in serum-free medium or in the patient's own serum. In addition, immunogenic proteins may be markedly reduced or eliminated by repeated washing in phosphate-buffered saline (PBS) or similar physiologically-compatible buffers.

Problems solved by technology

While the growth of cells in two-dimensions is frequently used for the preparation and examination of cultured cells in vitro, it lacks the characteristics of intact, in vivo tissue which, for example, includes cell-cell and cell-matrix interactions.
For example, three-dimensional collagen substrates have been utilized to culture a variety of cells including breast epithelium (Yang, Cancer Res. 41:1021 (1981)), vascular epithelium (Folkman et al., Nature 288:551(1980)), and hepatocytes (Sirica et al., Cancer Res. 76:3259 (1980)), however long-term culture and proliferation of cells in such systems has not yet been achieved.
However, numerous complications and the generally unsatisfactory nature of long-term aesthetic results caused the procedure to be rapidly abandoned.
More recently, the use of injectable silicone became prevalent in the 1960's for the correction of minor defects, although various inherent complications also limited the use of this substance.
Due to these potential complications, silicone is not currently approved for general clinical use.
It has also been suggested to compound extremely small particulate species in a lubricious material and inject such combination micro-particulate media subcutaneously for both soft and hard tissue augmentation and repair, however success has been heretofore limited.
Subsequent undesirable micro-particulate media migration and serious granulomatous reactions frequently occur with the injection of this material.
However. while these aforementioned materials create immediate augmentation and / or repair of defects, they also have a tendency to migrate and be reabsorbed from the original injection site.
The poor results initially obtained with the use of non-biological injectable materials prompted the use of various non-immunogenic, proteinaceous materials (e.g., bovine collagen and fibrin matrices).
Clinical protocols calling for repeated injections of atelocollagen are, in practice, primarily limited by the development of immunogenic reactions to the bovine collagen.
The increased viscosity, and in particular irregular increased viscosity resulting in “lumpiness,” not only rendered the material more difficult to utilize, but also made it unsuitable for use in certain circumstances.
However, like glutaraldehyde, GAG may be released into the tissue causing unforeseen long-term effects on human subjects.
Additionally, a reduction of collagen blood clotting capacity may also be deleterious in the application in bleeding wounds, as fibrin clot contributes to an adhesion of the graft to the surrounding tissue.
It should be noted, however, that there is no quantitative evidence which demonstrates that human collagen injection results in lower levels of implant degradation than that which is found with bovine collagen preparations.
Furthermore, the utilization of autologous collagen preparation and injection is limited to those individuals who have previously undergone surgery, due to the fact that the initial culture from which the collagen is produced is derived is from the tissue removed during the surgical procedure.
Therefore, it is evident that, although human collagen circumvents the potential for immunogenicity exhibited by bovine collagen, it fails to provide long-term therapeutic benefits and is limited to those patient who have undergone prior surgical procedures.
Clinical utilization of FIBREL® has been reported to often result in an overall lack of implant uniformity (i.e., “lumpiness”) and longevity, as well as complaints of patient discomfort associated with its injection.
Therefore, in conclusion, none of the currently utilized protein-based injectable materials appears to be totally satisfactory for the augmentation and / or repair of the subjacent dermis and soft tissue.
Thus, for large scale repair procedures (e.g., breast reconstruction) the amount of adipose tissue which can be surgically-excised from the patient may be limiting.
In addition, other frequently encountered difficulties with the aforementioned methodologies include non-uniformity of the injectate, unpredictable longevity of the aesthetic effects, and a 4-6 week period of post-injection inflammation and swelling.
However, unfortunately, these forms of treatment have all exhibited numerous disadvantages.
For example, split thickness autographs generally show limited tissue expansion, require repeated surgical operations, and give rise to unfavorable aesthetic results.
Epidermal autographs require long periods of time to be cultured, have a low success (“take”) rate of approximately 30-48%, frequently form spontaneous blisters, exhibit contraction to 60-70% of their original size, are vulnerable during the first 15 days of engraftment, and are of no use in situations where there is both epidermal and dermal tissue involvement.
Similarly, epidermal allografts (cultured allogenic keratinocytes) exhibit many of the limitations which are inherent in the use of epidermal autographs.
However, this too has met with limited success due to, for example, graft rejection and unfavorable aesthetic results.
However, subsequent attempts to reproduce the living skin equivalent using human fibroblasts and keratinocytes has met with only limited success.
However, when one (or both) of the vocal cords becomes totally or partially immobile, there is a diminution in the voice quality due to an inability to regulate and maintain the requisite tension and proximity of the damaged cord in relation to that of the operable cord.
Vocal cord paralysis may be caused by cancer, surgical or mechanical trauma, or similar afflictions which render the vocal cord incapable of being properly tensioned by the constrictor muscles.
However, this procedure is now considered unacceptable due to the inability of the injected TEFLON® to close large glottic gaps, as well as its tendency to induce inflammatory reactions resulting in the formation of fibrous infiltration into the injected cord.
Moreover, removal of the injected TEFLON® may be quite difficult should it subsequently be desired or become necessary.
Although SILASTIC® implants have proved to be superior over TEFLON® injections, there are several areas of dissatisfaction with the procedure including difficulty in the carving and insertion of the block, the large amount of time required for the procedure, and a lack of an efficient methodology for locking the block in place within the thyroid cartilage.
In addition, vocal cord edema, due to the prolonged nature of the procedure and repeated voice testing during the operation, may also prove problematic in obtaining optimal voice quality.
However, these materials have also proved to be less than ideal due to difficulties in the sizing and shaping of the solid implants as well as the potential for subsequent immunogenic reactions.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

I. Histology of the Skin

[0025] The skin is composed of two distinct layers: the epidermis, a specialized epithelium derived from the ectoderm, and beneath this, the dermis, of vascular dense connective tissue, a derivative of mesoderm. These two layers are firmly adherent to one another and form a region which varies in overall thickness from approximately 0.5 to 4 mm in different areas of the body. Beneath the dermis is a layer of loose connective tissue which varies from areolar to adipose in character. This is the superficial fascia of gross anatomy, and is sometimes referred to as the hypodermis, but is not considered to be part of the skin. The dermis is connected to the hypodermis by connective tissue fibers which pass from one layer to the other.

A. Epidermis

[0026] The epidermis, a stratified squamous epithelium, is composed of cells of two separate and distinct origins. The majority of the epithelium, of ectodermal origin, undergoes a process of keratinization resulting in...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
diameteraaaaaaaaaa
diameteraaaaaaaaaa
diameteraaaaaaaaaa
Login to View More

Abstract

Certain embodiments herein are directed to a method of treating a tissue associated with a defect in a human including wrinkles, rhytids, depressed scar, cutaneous depressions, stretch marks, hyperplasia of the lip, nasolabial fold, melolabial fold, scarring from acne vulgaris, and post-rhinoplasty irregularity. The tissue defect may be treated by introducing a plurality of in vitro cultured autologous fibroblast cells at or proximal to the defect area of the patient's tissue. The autologous fibroblast cells may have been cultured in vitro to expand the number of fibroblast cells in at least one medium that comprises autologous serum. The autologous fibroblast cell cultures may be derived from connective tissue, dermal, fascial fibroblasts, papillary fibroblasts, and / or reticular fibroblasts.

Description

REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. patent application Ser. No. 09 / 632,581, filed Aug. 3, 2000, which is a continuation of abandoned U.S. patent application Ser. No. 09 / 003,378, filed on Jan. 6, 1998, which claims priority to U.S. Patent Application No. 60 / 037,961, filed on Feb. 20, 1997, which patent applications are hereby incorporated by reference herein.FIELD OF INVENTION [0002] The field of the present invention is the long-term augmentation and / or repair of dermal, subcutaneous, or vocal cord tissue. BACKGROUND OF INVENTION I. In Vitro Cell Culture [0003] The majority of in vitro vertebrate cell cultures are grown as monolayers on an artificial substrate which is continuously bathed in a nutrient medium. The nature of the substrate on which the monolayers may be grown may be either a solid (e.g., plastic) or a semi-solid (e.g., collagen or agar). Currently, disposable plastics have become a preferred substrate for cell culture. ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61L27/24A61K35/12A61K38/00C12N5/00A61L27/38C12N5/077
CPCA61K35/12A61K38/00A61L27/24A61L27/3633A61L27/3641A61L27/3683A61L27/3804A61L27/3839A61L27/3895C12N5/0068C12N5/0653C12N5/0656C12N2533/54A61P11/04
Inventor KLEINSEK, DON A.
Owner KLEINSEK DON A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products