Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Multi-species polynucleotide control sequences

a polynucleotide control and multi-species technology, applied in the field of new nucleic acid sequences, can solve the problems of too much cloning work, high cost of synthetic dna, and 1000 synthetic genes costing 1 million us dollars

Inactive Publication Date: 2011-07-07
DSM IP ASSETS BV
View PDF0 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021]These polynucleotide sequences of the invention have the great advantage that when present in a polynucleotide control sequence, such as a promoter, the control sequence will direct expression in a wide range of industrially relevant species, in both prokaryotes and eukaryotes. Moreover when applied in combination with selection marker genes one can perform selectable cloning in a laboratory host (for example making deletion constructs in E. coli) and use the same construct in the final host. Also, for genes encoding enzymes like acetamidase (for example the Aspergillus nidulans amdS gene), which enzyme enables both forward and backward selection (i.e. selection for the presence or the absence of the enzyme), the polynucleotide control sequences of the present invention provide for a very efficient selection marker cassette which can be used in a wide range of industrially relevant species.
[0041]The term “operably linked” is defined herein as a configuration in which a control sequence is appropriately placed at a position relative to the coding sequence of the sequence gene-of-interest such that the control sequence directs the production of a polypeptide. It should be clear to those skilled in the art that transcriptional and translational stop signals are not always well defined and also not need to be specifically added to the gene-of-interest sequence, although specific addition can increase the overall efficiency polypeptide production. The polynucleotide control sequence preferably contains part of or the complete polynucleotide sequence of the invention. The polynucleotide control sequence may be any nucleic acid sequence, which shows transcription regulatory activity in the cell including mutant, truncated, and hybrid promoters, and may be obtained from any source, including but not limited to genomic DNA, synthetic DNA, copy DNA. The polynucleotide control sequence may be either homologous or heterologous to the cell or to the gene-of-interest.
[0065]The sequence information as provided herein should not be so narrowly construed as to require inclusion of erroneously identified bases. The specific sequences disclosed herein can be readily used to isolate the complete polynucleotide or nucleic acid sequence, which in turn can easily be subjected to further sequence analyses thereby identifying sequencing errors.
[0069]In an even more preferred embodiment, Micro Array data is used to select genes, and thus polynucleotide control sequences of those genes, that have a certain transcriptional level and regulation. In this way one can adapt the gene expression cassettes optimally to the conditions it should function in.
[0070]Alternatively, random DNA fragments may be cloned in front of the selectable marker genes, for example an antibiotic resistance marker gene like the ble gene, encoding for a protein that provides resistance towards compounds like zeocin, bleomycin and phleomycin. This is a selection marker gene which is used in several species (fungi, yeasts, bacteria), although with species specific promoters. Using selective growth conditions one can easily select for active polynucleotide control sequences, as these should facilitate growth on media containing zeocin (or phleomycin or bleomycin or any suitable alternative compound) in such a concentration that it will inhibit growth of the parent cell or cells with a non-functional promoter. These DNA fragments can be derived from many sources, i.e. different species, PCR amplified, synthetically and the like.
[0077]The polynucleotide molecules and the host cell of the invention may advantageously be used in a method for in vitro or in vivo cloning experiments. The combination of expression cassettes consisting of polynucleotide control sequences fused to the selection marker genes has many advantages. It significantly enhances the success rate of classical restriction enzyme and ligation cloning, it enhances the success rate single and multiple fragment Gateway recombination reactions, enables efficient multiple fragment STABY cloning reactions.

Problems solved by technology

Although fairly efficient there is a common drawback in all these methods: they use host species-specific regulation systems.
There are however cases where this will not help: (i) if the gene sequence / s is / are unknown, i.e. in metagenomic screening projects; (ii) if the protein needs donor-specific chaperones or helper enzymes, like P450 enzymes; (iii) if the DNA, RNA-intermediates and / or enzyme is toxic to the new host; (iv) if the folding of the enzyme is crucial for the activity and not possible by the new host; (v) if one wants to compare many known enzymes the total costs of synthetic DNA will become very high again, i.e. 1000 synthetic genes cost 1 million US dollar.
However, current state-of-the-art tools allow only for species-specific expression cassettes.
For each host a species-specific promoter is used and this leads to too much cloning work if one wants to evaluate the same enzyme(s) in multiple organisms.
However, in practice this involves still quite some laboratory procedures, especially when one want to test hundreds to thousands genes of interest.
Moreover, technologies like Gateway insert a stretch of nucleotides (20-30 bp) between promoter and gene-of-interest, which can severely hamper the transcription and / or translation of the gene.
However, there seem to be some crucial differences in promoter organization between species; for example between eukaryotes and prokaryotes.
But species like Bacillus are much more stringent, while the wide metabolic diversity of Streptomyces might have evolved into an extremely wide range of promoter structures making it impossible to extract common (and predictive) features in this group.
So, in practice there might be sequences in a promoter which are not recognized by any of the cell's machinery in one host, while in another host this would be the basis of a very strong and unwanted transcriptional regulation.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 4

Multisite Insertion of Bacterial Sequences in Fungal Promoters Drive Efficient Gene Expression in Escherichia coli

[0112]In a further attempt to find a promoter which is active in both eukaryotes and prokaryotes, consensus sequences in the last 84 basepairs of the PE4 promoter of Bacillus subtilis (Stewart et al., 1998) were inserted at several positions in the glucose-repression-insensitive pcbC promoter of Penicillium chrysogenum (SEQ ID NO 67) and in the gpdA promoter of Aspergillus (SEQ ID NO 70). This lead to the polynucleotide sequences of SEQ ID NO 46 and 48, respectively, embedded in the polynucleotide control sequences of SEQ ID No 72 and 74. All constructs were made synthetically in front of the ble gene (DNA2.0, Menlo Park, Calif. 94025, USA) followed by fungal terminators (yielding plasmids p3306ble and p3310ble, respectively). In some cases the bacterial sequences replaced the fungal sequences at the site of insertion. This lead to the polynucleotide sequences of SEQ ID...

example 5

Fungal Sterol Transmethylase Like Promoter Drives Expression in E. coli

[0117]To verify the general applicability of the consensus sequence, the genomic sequences of Aspergillus niger and Penicillium chrysogenum were screened for promoter regions which followed the consensus sequence of Example 4 and could be used in E. coli.

[0118]As an example, one promoter of Penicillium chrysogenum was identified that was actively transcribed under standard growth conditions (verified by Affymetrix MicroArrays) and followed the consensus sequence (see FIG. 5A). The promoter is in front of a gene with strong similarity to the sterol transmethylase ERG6 of Candida albicans. Two constructs were made synthetically in front of the ble gene (Codon Devices, Cambridge, Mass., USA) and followed by termination sequences. One synthetic construct contains one modification in the promoter sequence: CAT in front of the startcodon to introduce an NdeI site (the polynucleotide sequence of SEQ ID NO 50, embedded...

example 6

Use of the amdS Gene and Acetamide Selection in Escherichia coli

[0121]As the amdS gene encoding acetamidase (for example the Aspergillus nidulans amdS gene), is a useful selectable marker gene in yeast and fungi from which transformants can be readily selected for the presence or the absence, it would be very useful if such a marker would function in prokaryotes, as they are often incapable of growing on acetamide (see for example the results below) and the gene is not part of general metabolism. To this end the cDNA of the Aspergillus nidulans amdS gene was PCR amplified from mRNA isolated from amdS positive Penicillium transformants of Example 2. Total RNA was isolated from approximately 106 cells using the StrataPrep Total RNA MicroPrep Kit (Stratagene). One-tenth of the total RNA was used for oligo-dT directed cDNA synthesis (Thermoscript RT-PCR, Life Technologies), which was used as template for 30 cycles of PCR (using a proofreading enzyme) using the specific oligonucleotides...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

The present invention relates to polynucleotide sequences which enable a polynucleotide control sequence, such as a promoter, to direct expression in a wide range of industrially relevant species, both prokaryotes and eukaryotes. When the polynucleotide sequences of the invention are applied in combination with selection marker genes it is possible to perform selectable cloning in a laboratory host and use the same construct in the final host

Description

FIELD OF THE INVENTION[0001]The present invention relates to new nucleic acid sequences which are able to drive gene expression in several industrially relevant species.BACKGROUND OF THE INVENTION[0002]To optimize the production of various compounds of interest recombinant DNA technologies provide for a very relevant toolbox. These tools allow for the efficient modification of genomic DNA in such way that various alterations are possible. Among these are: overexpression of a homologous gene, overexpression of a heterologous gene, deletion of a homologous gene, block a metabolic route to a unwanted side product, diversion of a metabolic route. Although fairly efficient there is a common drawback in all these methods: they use host species-specific regulation systems. If one wants to test the properties of an enzyme encoded by a certain gene this is most often done in one species; the favorite species of the laboratory. If such a gene is obtained from a different donor species, quite ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12P1/00C07H21/00C12N15/63C12N1/00C12Q1/68C12P21/00C12N15/00
CPCC12N15/70C12N15/81C12N15/80C12N15/63C12N15/75
Inventor VAN DEN BERG, MARCO ALEXANDER
Owner DSM IP ASSETS BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products