Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

304 results about "Prokaryote" patented technology

A prokaryote is a unicellular organism that lacks a membrane-bound nucleus, mitochondria, or any other membrane-bound organelle. The word prokaryote comes from the Greek πρό (pro) "before" and κάρυον (karyon) "nut" or "kernel". Prokaryotes are divided into two domains, Archaea and Bacteria. Species with nuclei and organelles are placed in the third domain, Eukaryota. Prokaryotes reproduce without fusion of gametes. The first living organisms are thought to have been prokaryotes.

Kits and methods for generating 5' capped RNA

The present invention relates to kits and methods for efficiently generating 5′ capped RNA having a modified cap nucleotide and for use of such modified-nucleotide-capped RNA molecules. The invention is used to obtain novel compositions of such modified-nucleotide-capped RNA molecules. In particular, the present invention provides kits and methods for capping RNA using a modified cap nucleotide and a capping enzyme system, such as poxvirus capping enzyme. The present invention finds use for in vitro production of 5′-capped RNA having a modified cap nucleotide and for in vitro or in vivo production of polypeptides by in vitro or in vivo translation of such modified-nucleotide-capped RNA for a variety of research, therapeutic, and commercial applications. The invention also provides methods and kits for capturing or isolating uncapped RNA comprising primary RNA transcripts or RNA having a 5′-diphosphate, such as RNA synthesized in vitro or obtained from a biological source, including prokaryotic mRNA that is in a mixture with other prokaryotic and/or eukaryotic nucleic acids. The method for capturing modified-nucleotide-capped RNA also provides methods and kits for obtaining only type-specific or condition-specific modified-nucleotide-capped RNA by cap-dependent subtraction of that portion of the captured modified-nucleotide-capped RNA in cells of one type or condition that is the same as RNA in cells of another type or condition. The invention further provides methods and kits for using a capping enzyme system and modified cap nucleotides for labeling uncapped RNA comprising primary RNA transcripts or RNA having a 5′-diphosphate with detectable dye or enzyme moieties.
Owner:CELLSCRIPT

Artificial promoter libraries for selected organisms and promoters derived from such libraries

An artificial promoter library (or a set of promoter sequences) for a selected organism or group of organisms is constructed as a mixture of double stranded DNA fragments, the sense strands of which comprise at least two consensus sequences of efficient promoters from said organism or group of organisms, or parts thereof comprising at least half of each, and surrounding intermediate nucleotide sequences (spacers) of variable length in which at least 7 nucleotides are selected randomly among the nucleobases A, T, C and G. The sense strands of the double stranded DNA fragments may also include a regulatory DNA sequence imparting a specific regulatory feature, such as activation by a change in the growth conditions, to the promoters of the library. Further, they may have a sequence comprising one or more recognition sites for restriction endonucleases added to one or both of their ends. The selected organism or group of organisms may be selected from prokaryotes and from eukaryotes; and in prokaryotes the consensus sequences to be retained most often will comprise the −35 signal (−35 to −30): TTGACA and the −10 signal (−12 to −7): TATAAT or parts of both comprising at least 3 conserved nucleotides of each, while in eukaryotes said consensus sequences should comprise a TATA box and at least one upstream activation sequence (UAS). Such artificial promoter libraries can be used, e.g., for optimizing the expression of specific genes in various selected organisms.
Owner:JENSEN PETER RUHDAL +1

NAD synthetase inhibitors and uses thereof

InactiveUS6861448B2Reduce and eliminate productionDecreasing prokaryotic growthBiocideCarboxylic acid nitrile preparationMammalEnzyme inhibitor
Disclosed are compounds that inhibit the microbial NAD synthetase enzyme. For example, disclosed are compounds of the formula Ar1—X—Ar2—Y—L—Z—Q, wherein Q is Q1Ar3 or Ar3Q1; Ar1, Ar2, and Ar3 are independently aryl or heteroaryl, optionally substituted with one or more substituents; X, Y, and Z are independently selected from the group consisting of a covalent bond or groups containing one or more of C, H, N, O, S atoms; L is a linker and Q1 is an alkylenyl, alkylenyl carbonyloxy alkyl, or alkylenyl carbonylamino alkyl group, optionally having a substituent; a covalent bond; a group containing amidine or guanidine function wherein the amidine or guanidine may be optionally N-substituted with an alkyl; or a zwitterion; or a pharmaceutically acceptable salt thereof. Also disclosed are methods which involve the use of the compounds of the present invention, for example, in treating or preventing a microbial infection in a mammal or plant, killing a prokaryote or decreasing prokaryotic growth, disinfecting a material or environment contaminated by a microbe, increasing food animal production, controlling harm to plants by a pest or insect, and combating agroterrorism. Examples of microbes affected by the compounds of the present invention are bacteria and fungi.
Owner:VIRTUAL DRUG DEV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products