Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30 results about "Fibronectin type III domain" patented technology

The Fibronectin type III domain is an evolutionary conserved protein domain that is widely found in animal proteins. The fibronectin protein in which this domain was first identified contains 16 copies of this domain. The domain is about 100 amino acids long and possesses a beta sandwich structure. Of the three fibronectin-type domains, type III is the only one without disulfide bonding present. Fibronectin domains are found in a wide variety of extracellular proteins. They are widely distributed in animal species, but also found sporadically in yeast, plant and bacterial proteins.

Method for building N-glycosylation efficiency detection receptor protein models in Escherichia coli by aid of skeleton proteins Fn3 (fibronectin type III domain)

The invention belongs to the field of biotechnologies, and relates to a method for applying recombinant expression separated and purified human-derived protein Fn3 (fibronectin type III domain) mutants as N-glycosylation efficiency detection model proteins. The method includes steps of constructing Fn3-Gly-loop recombinant protein gene expression vectors of the Fn3 mutants; jointly transforming the constructed expression vectors into Escherichia coli engineering strains CLM37 by means of electric shock processes; screening the expression vectors by the aid of antibiotics to obtain positive clones. Recombinant proteins contain Fn3-Gly-loop proteins which are about to be modified by recombinant glycosyl, and the Fn3-Gly-loop fusion protein glycosylation efficiency can be detected by the aid of Western Blot processes. The method has the advantages that the skeleton proteins Fn3 in Escherichia coli are used as receptor proteins, accordingly, the model receptor proteins suitable for N-glycosylation modification efficiency research can be constructed, and the recombinant protein glycosylation efficiency can be easily, quickly and efficiently detected in the Escherichia coli.
Owner:DALIAN UNIV

A method for establishing an n-glycosylation receptor protein model in Escherichia coli using the skeleton protein fn3

ActiveCN105154462BImprove physical and chemical propertiesImprove physical and chemical properties such as solubilityBacteriaMicroorganism based processesEscherichia coliProkaryote organisms
The invention belongs to the field of biotechnologies, and relates to a method for building efficient N-glycosylation receptor protein models in Escherichia coli by the aid of skeleton proteins Fn3 (fibronectin type III domain). The human-derived proteins Fn3 with N-glycosylation recognition sites are used as receptor proteins. The method includes steps constructing Fn3-Gly recombinant protein gene expression vectors; forming recombinant genes of the N-glycosylation recognition sites carried by the human-derived proteins Fn3; cloning the genes onto the expression vectors capable of secreting the recombinant genes onto pericoel. Recombinant proteins expressed by the vectors can be used as the prokaryote research N-glycosylation receptor protein models for N-glycosylation recombinant research. The method has the advantages that the nearly 100% N-glycosylation recombinant proteins which are good in heat stability, high in expression quantity and convenient to separate and purify can be obtain, excellent protein receptors can be provided for N-glycosylation recombinant engineering, the receptor protein models can be provided for prokaryote N-glycosylation recombinant engineering, and foundation can be laid for efficiently carrying out oligosaccharide chain analysis and function research in late periods of the N-glycosylation recombinant engineering.
Owner:DALIAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products