Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

234 results about "Quantization matrix" patented technology

The quantization matrix is designed to provide more resolution to more perceivable frequency components over less perceivable components (usually lower frequencies over high frequencies) in addition to transforming as many components to 0, which can be encoded with greatest efficiency.

Method and apparatus for generating a quantisation matrix that can be used for encoding an image or a picture sequence

A significant data rate reduction effect in video coding is acchieved by quantizing the transformed frequency coefficients or components of a pixel block so that thereafter fewer amplitude levels need to be encoded and part of the quantised amplitude values becomes zero and need not be encoded as quantised amplitude values. Many transform based video coding standards use a default quantization matrix to achieve better subjective video coding/de-coding quality. A quantization matrix assigns smaller scaling values to some frequency components of the block if the related horizontal and/or vertical frequencies are believed to be the less important frequency components with respect to the resulting subjective picture quality. The inventive quantization matrix generation starts from default quantization matrices and derives therefrom a perceptually optimum quantization matrix for a given picture sequence. In a first pass the candidate quantization matrix for a given picture sequence is iteratively constructed by simultaneously increasing scaling values for some coefficient positions and decreasing scaling values for other ones of the coefficient positions. In a second pass the generated quantization matrix is applied for re-encoding the picture sequence.
Owner:THOMSON LICENSING SA

Efficient de-quantization in a digital video decoding process using a dynamic quantization matrix for parallel computations

An efficient digital video (DV) decoder process that utilizes a specially constructed quantization matrix allowing an inverse quantization subprocess to perform parallel computations, e.g., using SIMD processing, to efficiently produce a matrix of DCT coefficients. The present invention utilizes a first look-up table (for 8x8 DCT) which produces a 15-valued quantization scale based on class number information and a QNO number for an 8x8 data block ("data matrix") from an input encoded digital bit stream to be decoded. The 8x8 data block is produced from a deframing and variable length decoding subprocess. An individual 8-valued segment of the 15-value output array is multiplied by an individual 8-valued segment, e.g., "a row," of the 8x8 data matrix to produce an individual row of the 8x8 matrix of DCT coefficients ("DCT matrix"). The above eight multiplications can be performed in parallel using a SIMD architecture to simultaneously generate a row of eight DCT coefficients. In this way, eight passes through the 8x8 block are used to produce the entire 8x8 DCT matrix, in one embodiment consuming only 33 instructions per 8x8 block. After each pass, the 15-valued output array is shifted by one value position for proper alignment with its associated row of the data matrix. The DCT matrix is then processed by an inverse discrete cosine transform subprocess that generates decoded display data. A second lookup table can be used for 2x4x8 DCT processing.
Owner:SONY ELECTRONICS INC +1

Coding rate conversion apparatus, coding rate conversion method, and integrated circuit

A plurality of macroblocks constituting coded data are inverse quantized using a first quantization matrix that is used when coding a picture, to obtain a plurality of sets of coefficient data. The first quantization matrix is converted to a second quantization matrix using a first conversion value and a second conversion value, where the first conversion value is for converting a low frequency coefficient corresponding to a frequency lower than a predetermined frequency among a plurality of coefficients shown by the first quantization matrix, and the second conversion value is for converting a high frequency coefficient among the plurality of coefficients and is larger than the first conversion value (Step S408). When the second quantization matrix is a matrix for increasing a coding rate of the coded data, a converted scale is calculated by multiplying a quantization scale corresponding to at least one macroblock by β1 (≧1). At least one part of the plurality of sets of coefficient data is quantized using the second quantization matrix and a calculated converted scale that corresponds to a macroblock corresponding to the at least one part of the plurality of sets of coefficient data.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products