Augmentation and repair of tissue defects with in vitro cultured fibroblasts

a technology of fibroblasts and in vitro culture, applied in the direction of biocide, peptide/protein ingredients, unknown materials, etc., can solve the problems of inability to achieve long-term culture and proliferation of cells in such systems, lack of intact, in vivo tissue characteristics, and rapid abandonment of procedures, etc., to achieve effective treatment of vocal cord paralysis and/or damage

Inactive Publication Date: 2007-07-05
KLEINSEK DON A
View PDF76 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021] Other methodologies which have been utilized in the treatment of vocal cord paralysis and damage include GELFOAM® hydroxyapatite, and porous ceramic implants, as well as injections of silicone and collagen. See e.g., Koufman, Laryngoplastic Phonosurgery (1988). However, these materials have also p...

Problems solved by technology

While the growth of cells in two-dimensions is frequently used for the preparation and examination of cultured cells in vitro, it lacks the characteristics of intact, in vivo tissue which, for example, includes cell-cell and cell-matrix interactions.
For example, three-dimensional collagen substrates have been utilized to culture a variety of cells including breast epithelium (Yang, Cancer Res. 41:1021 (1981)), vascular epithelium (Folkman et al., Nature 288:551(1980)), and hepatocytes (Sirica et al., Cancer Res. 76:3259 (1980)), however long-term culture and proliferation of cells in such systems has not yet been achieved.
However, numerous complications and the generally unsatisfactory nature of long-term aesthetic results caused the procedure to be rapidly abandoned.
More recently, the use of injectable silicone became prevalent in the 1960's for the correction of minor defects, although various inherent complications also limited the use of this substance.
Due to these potential complications, silicone is not currently approved for general clinical use.
It has also been suggested to compound extremely small particulate species in a lubricious material and inject such combination micro-particulate media subcutaneously for both soft and hard tissue augmentation and repair, however success has been heretofore limited.
Subsequent undesirable micro-particulate media migration and serious granulomatous reactions frequently occur with the injection of this material.
However. while these aforementioned materials create immediate augmentation and/or repair of defects, they also have a tendency to migrate and be reabsorbed from the original injection site.
The poor results initially obtained with the use of non-biological injectable materials prompted the use of various non-immunogenic, proteinaceous materials (e.g., bovine collagen and fibrin matrices).
Clinical protocols calling for repeated injections of atelocollagen are, in practice, primarily limited by the development of immunogenic reactions to the bovine collagen.
The increased viscosity, and in particular irregular increased viscosity resulting in “lumpiness,” not only rendered the material more difficult to utilize, but also made it unsuitable for use in certain circumstances.
However, like glutaraldehyde, GAG may be released into the tissue causing unforeseen long-term effects on human subjects.
Additionally, a reduction of collagen blood clotting capacity may also be deleterious in the application in bleeding wounds, as fibrin clot contributes to an adhesion of the graft to the surrounding tissue.
It should be noted, however, that there is no quantitative evidence which demonstrates that human collagen injection results in lower levels of implant degradation than that which is found with bovine collagen preparations.
Furthermore, the utilization of autologous collagen preparation and injection is limited to those individuals who have previously undergone surgery, due to the fact that the initial culture from which the collagen is produced is derived is from the tissue removed during the surgical procedure.
Therefore, it is evident that, although human collagen circumvents the potential for immunogenicity exhibited by bovine collagen, it fails to provide long-term therapeutic benefits and is limited to those patient who have undergone prior surgical procedures.
Clinical utilization of FIBREL® has been ...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

I. Histology of the Skin

[0025] The skin is composed of two distinct layers: the epidermis, a specialized epithelium derived from the ectoderm, and beneath this, the dermis, of vascular dense connective tissue, a derivative of mesoderm. These two layers are firmly adherent to one another and form a region which varies in overall thickness from approximately 0.5 to 4 mm in different areas of the body. Beneath the dermis is a layer of loose connective tissue which varies from areolar to adipose in character. This is the superficial fascia of gross anatomy, and is sometimes referred to as the hypodermis, but is not considered to be part of the skin. The dermis is connected to the hypodermis by connective tissue fibers which pass from one layer to the other.

A. Epidermis

[0026] The epidermis, a stratified squamous epithelium, is composed of cells of two separate and distinct origins. The majority of the epithelium, of ectodermal origin, undergoes a process of keratinization resulting in...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Certain embodiments here in are directed to a method of treating a tissue associated with a defect in a human including wrinkles, rhytids, depressed scar, cutaneous depressions, stretch marks, hyperplasia of the lip, nasolabial fold, melolabial fold, scarring from acne vulgaris, and post-rhinoplasty irregularity. The tissue defect may be treated by introducing a plurality of in vitro cultured autologous fibroblast cells at or proximal to the defect area of the patient's tissue. The autologous fibroblast cells may have been cultured in vitro to expand the number of fibroblast cells in at least one medium that comprises autologous serum. The autologous fibroblast cell cultures may be derived from connective tissue, dermal, fascial fibroblasts, papillary fibroblasts, and/or reticular fibroblasts.

Description

REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. patent application Ser. No. 09 / 632,581, filed Aug. 3, 2000, which is a continuation of abandoned U.S. patent application Ser. No. 09 / 003,378, filed on Jan. 6, 1998, which claims priority to U.S. Patent Application No. 60 / 037,961, filed on Feb. 20, 1997, which patent applications are hereby incorporated by reference herein.FIELD OF INVENTION [0002] The field of the present invention is the long-term augmentation and / or repair of dermal, subcutaneous, or vocal cord tissue. BACKGROUND OF INVENTION I. In Vitro Cell Culture [0003] The majority of in vitro vertebrate cell cultures are grown as monolayers on an artificial substrate which is continuously bathed in a nutrient medium. The nature of the substrate on which the monolayers may be grown may be either a solid (e.g., plastic) or a semi-solid (e.g., collagen or agar). Currently, disposable plastics have become a preferred substrate for cell culture. ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61K35/42A61K35/28A61K35/35
CPCA61K38/39A61K35/28A61K35/35A61K2300/00
Inventor KLEINSEK, DON A.
Owner KLEINSEK DON A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products