Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Systems and methods for rapidly changing the solution environment around sensors

a sensor and solution environment technology, applied in the field of systems and methods for rapid and programmable delivery of aqueous streams to sensors, can solve the problems of affecting the development of hts platforms, ignoring significant drug activity of existing hts drug discovery systems targeting ion channels, and avoiding detection of false drugs

Inactive Publication Date: 2006-04-13
CELLECTRICON
View PDF8 Cites 34 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005] The invention provides microfluidic systems for altering the solution environment around a nanoscopic or microscopic object, such as a sensor, and methods for using the same. The invention can be applied in any sensor technology in which the sensing element needs to be exposed rapidly, sequentially, and controllably, to a large number of different solution environments (e.g., greater than 10 and preferably, greater than about 96 different environments) whose characteristics may be known or unknown. In contrast to prior art microfluidic systems, the interval between sample deliveries is minimized, e.g., on the order of microseconds and seconds, permitting rapid analysis of compounds (e.g., drugs).
[0017] The invention also provides a system comprising a substrate which comprises at least one chamber for receiving a cell-based biosensor, a plurality of channels, at least one cell storage chamber and at least one cell treatment chamber. Preferably, each channel comprises an outlet for delivering a fluid stream into the chamber, and the cell treatment chamber is adapted for delivering an electrical current to a cell placed within the cell treatment chamber. In one aspect, the cell treatment chamber further comprises a channel with an outlet for delivering a cell to the sensor chamber for receiving the cell-based biosensor. The system can be used to rapidly and programmably change the solution environment around a cell which has been electroporated and / or electrofused, and / or otherwise treated within the cell treatment chamber. Alternatively, or additionally, the sensor chamber also can be used as a treatment chamber and in one aspect, the sensor chamber is in electrical communication with one or more electrodes for continuously or intermittently exposing a sensor to an electric field.
[0020] The invention additionally provides a substrate comprising a chamber for receiving a cell-based biosensor which comprises a receptor or ion channel. In one aspect, the system sequentially exposes a cell-based biosensor for short periods of time to one or several ligands which binds to the receptor / ion channel and to buffer without ligand for short periods of time through interdigitated channels of the substrate. For example, selective exposure of a cell biosensor to these different solution conditions for short periods of time can be achieved by scanning the cell-based biosensor across interdigitated channels which alternate delivery of one or several ligands and buffer. The flow of buffer and sample solution in each microfluidic channel is preferably a steady state flow at constant velocity. However, in another aspect, the system delivers pulses (e.g., pulsatile on / off flow) of buffer to a receptor through a superfusion capillary positioned in proximity to both the cell-based biosensor or other type of sensor and to an outlet through which a fluid is streaming. For example, the system can comprise a mechanism for holding the sensor which is coupled to a positioner (e.g., a micropositioner, nanopositioner, micromanipulator, etc.) for positioning the c sensor in proximity to the outlet and a capillary comprising an outlet in sufficient proximity to the mechanism for holding the sensor to deliver a buffer from the capillary to the sensor. A scanning mechanism can be used to move both the capillary and sensor simultaneously, to maintain the appropriate proximity of the capillary to the sensor. The capillary also can be coupled to a pumping mechanism to provide pulsatile delivery of buffer to the sensor. In another aspect, the flow rate of buffer from the one or more superfusion capillaries in proximity to one or more sensors can be higher or lower than the flow rate of fluid from the channels.
[0027] The system can thus regulate when, and through which channel, a fluid stream is withdrawn from the chamber. For example, after a defined period of time, a fluid stream can be withdrawn from the chamber through the same channel through which it entered the system or through a different channel. When a drain channel is adjacent to a delivery channel, the system can generate a U-shaped fluid stream which can efficiently recycle compounds delivered through delivery channels.
[0039] In another aspect, the viscosity of fluids in at least two of the channels is different. In yet another aspect, fluid within at least two of the channels are at a different temperature. In a further aspect, the osmolarity of fluid within at least two of the channels is different. In a still further aspect, the ionic strength of fluid within at least two of the channels is different. Fluid in at least one of the channels also can comprise an organic solvent. By changing these parameters at different outlets, sensor responses can be optimized to maximize sensitivity of detection and minimize background. In some aspects, parameters also can be varied to optimize certain cell treatments being provided (e.g., such as electroporation or electrofusion).
[0048] In one aspect, a periodically resensitized receptor is provided using the superfusion system described above to deliver pulses of buffer to the cell-based biosensor, to thereby remove any bound agonist or modulator desensitizing the receptor, before the receptor is exposed to the next channel outlet containing agonists or receptor modulators. In detection of antagonists, the pulsated superfusion system can also periodically remove the constantly applied agonist. A transient peak response (which is desensitized to a steady state response) is generated when the resensitized biosensor is exposed to the agonist. The generation of this peak response can provide a better signal-to-noise ratio in detection of antagonists.

Problems solved by technology

However, existing HTS drug discovery systems targeting ion channels generally miss significant drug activity because they employ indirect methods, such as raw binding assays or fluorescence-based readouts.
Although as many as ten thousand drug leads can be identified from a screen of a million compounds, identification of false positives and false negatives can still result in a potential highly therapeutic blockbuster drug being ignored, and in unnecessary and costly investments in false drug leads.
However, patch clamp methods generally have not been the methods of choice for developing HTS platforms.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Systems and methods for rapidly changing the solution environment around sensors
  • Systems and methods for rapidly changing the solution environment around sensors
  • Systems and methods for rapidly changing the solution environment around sensors

Examples

Experimental program
Comparison scheme
Effect test

example 1

Microfabrication of a Substrate

[0252]FIG. 19 shows examples of microchannels fabricated in silicon by deep reactive ion etching in SF6. Masks for photolithography were produced using standard e-beam writing on a JEOL JBX-5DII electron beam lithography system (medium reflective 4″ chrome masks and Shipley UV5 resists, 50 keV acc. voltage, dose 15 μC / cm−2, exposure current 5 nA). The resist was spin coated at 2000 rpm for 60 s giving 250 nm of resist and soft baked for 10 minutes at 130° C. on a hotplate before exposure. The pattern was post exposure baked for 20 minutes in an oven at 130° C. and developed for 60 s in Shipley MF24-A, rinsed in DI water and etched in a reactive ion etcher (Plasmatherm RIE m-95, 30 s, 50 W, 250 mTorr, 10 ccm O2). The chrome was etched for 1-2 minutes in Balzers chrome etch #4, the mask was stripped of the remaining resist using Shipley 1165 remover and rinsed in acetone, isopropanol and DI water. A 3″, [100], two sides polished, low N-doped Silicon waf...

example 2

Re-Sensitization of Patch-Clamped Cells Using Microfluidic-Based Buffer Superfusion and Cell Scanning

[0256] Microchannels were molded in a polymer, polydimethylsiloxane (PDMS), which were then sealed irreversibly onto a glass coverslip to form an enclosed channel having four walls.

[0257] The procedure used is the following:

[0258] (1) A silicon master used for molding PDMS was fabricated by first cleaning the wafer to ensure good adhesion to the photoresist, followed by spin coating a layer (˜50 am) of negative photoresist (SU 8-50) onto the wafer. This layer of negative photoresist was then soft baked to evaporate the solvents contained in the photoresist. Photolithography with a mask aligner was carried out using a photomask having the appropriate patterns that were prepared using e-beam writing. The exposed wafer was then baked and developed by washing away the unexposed photoresist in an appropriate developer (e.g. propylene glycol methyl ether acetate).

[0259] (2) This develo...

example 3

Rapid Scanning of A Patch-Clamped Cell Across Interdigitated Streams of Ligands and Buffer for HTS Applications

[0269] One preferred embodiment for implementing HTS using the current invention is to scan a patch-clamped cell rapidly across interdigitated streams of buffer and ligands, with each ligand stream corresponding to a different drug. In these applications, as discussed above, both the flow rate of the fluids exiting the microchannels and the scan rate of the patch-clamped cell are important FIGS. 21A-D show the response of patch-clamped whole cells after being scanned across the outlets of a 7-channel structure. The width of each channel is 100 μm, the thickness is 50 μm, and the interchannel spacing is 25 μm. This 7-channel structure is identical to that shown in FIG. 16B. The procedure used for fabricating the microchannels and for patch clamping are identical to that described in Example 2 (see above). The patch clamped cell used was a PC-12 cell, which was placed betwee...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
angleaaaaaaaaaa
angleaaaaaaaaaa
thickaaaaaaaaaa
Login to View More

Abstract

The invention provides microfluidic systems for altering the solution environment around a nanoscopic or microscopic object, such as a sensor, and methods for using the same. The invention can be applied in any sensor technology in which the sensing element needs to be exposed rapidly, sequentially, and controllably, to a large number of different solution environments whose characteristics may be known or unknown.

Description

FIELD OF THE INVENTION [0001] The invention relates to systems and methods for rapid and programmable delivery of aqueous streams to a sensor, such as a cell-based biosensor. In particular, the invention provides methods and systems for high throughput patch clamp analysis. BACKGROUND OF THE INVENTION [0002] Ion-channels are important therapeutic targets. Neuronal communication, heart function, and memory all critically rely upon the function of ligand-gated and voltage-gated ion-channels. In addition, a broad range of chronic and acute pathophysiological states in many organs such as the heart, gastrointestinal tract, and brain involve ion channels. Indeed, many existing drugs bind receptors directly or indirectly connected to ion-channels. For example, anti-psychotic drugs interact with receptors involved in dopaminergic, serotonergic, cholinergic and glutamatergic neurotransmission. [0003] Because of the importance of ion-channels as drug targets, there is a need for methods whic...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/02C12M1/34C12M1/42C12N5/07C12N5/071G01N21/27G01N27/416G01N33/543G01N37/00
CPCB01L3/0293G01N33/554B01L3/502715B01L3/50273B01L2200/027B01L2200/0636B01L2200/10B01L2300/0627B01L2300/0636B01L2300/0645B01L2300/0816B01L2300/0829B01L2300/0867B01L2300/087B01L2300/0874B01L2300/14B01L2400/0487B82Y5/00B82Y10/00B82Y20/00G01N33/15G01N33/48728G01N33/54366G01N33/5438B01L3/5027C12M3/00C12Q1/02
Inventor CHIU, DANIELORWAR, OWEJARDEMARK, KENTKARLSSON, MATTIASOLOFSSON, JESSICAPIHL, JOHANSINCLAIR, JON
Owner CELLECTRICON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products