Catalyst Coating and Process for Production Thereof
a catalyst and catalyst technology, applied in the field of catalysts, can solve the problems of high electrolysis voltage, overpotential component of chlorine deposition, electrodes to evolve oxygen, etc., and achieve the effect of low overpotential and low electrolysis voltag
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Comparative Example with Commercial Anodes for NaCl Electrolysis and Electrolysis Test
[0068]A titanium-standard expanded metal anode from De Nora for NaCl electrolysis, which had been equipped with a ruthenium oxide- and iridium oxide-containing catalyst coating, was used. The size of the anode in the laboratory cell used was 10 cm×10 cm; the anode support material contained titanium and had the form of an expanded metal, characterized by the mesh size of 8 mm, land width 2 mm and land thickness 2 mm. Between the anode space and cathode space, a DuPont Nafion 982 ion exchange membrane was used. The cathode used was a standard nickel cathode from Denora for NaCl electrolysis, which had been equipped with a ruthenium-containing coating. The electrode separation was 3 mm. Introduced into the anode space of the electrolysis cell was an NaCl-containing solution having a sodium chloride concentration of 210 g / l, a volume flow rate between 5 and 10 l / h and a temperature of 88° C. On the ca...
example 2
Comparative Example
[0069]A coating solution comprising 2.00 g of ruthenium(III) chloride hydrate (Ru content 40.5% by weight), 9.95 g of n-butanol, 0.94 g of conc. hydrochloric acid (37% by weight), 5.93 g of tetra-n-butyl titanate (Ti—(O-Bu)4) is made up. This is applied by brush to a sand-blasted expanded titanium metal with the same geometry as in Example 1 as a support. In the coating solution, the concentration of mineral acid is 27.3 mol % and the acid concentration thus totals 27.3 mol %. The ratio of the sum of the amounts of acid to the sum of the amounts of metal in the coating solution is 0.375.
[0070]Subsequently, the expanded metal is dried at 80° C. for 10 min and then sintered at 470° C. for 10 min. The application operation is repeated three times more, as are the drying and sintering. The last sintering operation is effected at 520° C. for 60 min. The areal ruthenium loading was determined from the consumption of the coating solution to be 20.8 g / m2, with a compositi...
example 3
Inventive Coating Production
[0071]Titanium sheets having a diameter of 15 mm (thickness 2 mm) were sand-blasted to clean and to roughen the surface and then etched in 10% oxalic acid at 80° C. (30 min), then cleaned with isopropanol.
[0072]Production of the coating solution: 4.00 g of titanium(IV) isopropoxide are added dropwise to an initial charge of 3.18 g of acetic acid while cooling in an ice bath with vigorous stirring, with at least 1 min of stirring time between two drops. The clear solution formed is then stirred while cooling for a further 12 h. To this is added dropwise a solution of 1.50 g of ruthenium(III) chloride hydrate (Ru content 40.35% by weight) in 29.74 g of 10% hydrochloric acid while cooling in an ice bath and stirring vigorously. Thereafter, the product is stirred for a further 96 h. In the coating solution prepared as described above, the concentration of organic acid is 34.3 mol %, the concentration of mineral acid 52.8 mol %, and the total acid concentratio...
PUM
Property | Measurement | Unit |
---|---|---|
temperature | aaaaa | aaaaa |
current density | aaaaa | aaaaa |
density | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com