Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

81 results about "SRGB" patented technology

SRGB (standard Red Green Blue) is an RGB color space that HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the Internet. It was subsequently standardized by the IEC as IEC 61966-2-1:1999. It is often the "default" color space for images that contain no color space information, especially if the images' pixels are stored in 8-bit integers per color channel.

System and method for selecting the best set of devices for rendering color documents

The system for selecting a best device for rendering a color document involves first determining the types of color data included in the color document to be printed. Once the type of color data has been determined, the color characteristics are matched against the strengths of the available output devices to obtain a list of devices best suited for this particular color print job. At least one device from the list of best devices is selected and the color document is rendered onto the selected device. Preferably, the types of color data involved are determined by the mix of defined colorimetry and undefined colorimetry in the color document. Alternatively, the types of color data are determined by analyzing the colorspaces in the document (i.e., RGB, CMYK, LAB, XYZ, etc.), and the embedded profiles, if any, in the document (e.g., sRGB, SWOPCMYK, Euroscale). In the instance wherein a number of devices match the criteria for selection, only those devices which honor embedded color profiles are selected for documents containing embedded profiles. Alternatively, only those devices are selected that produce a consistent rendering across multiple color spaces and profiles for documents with a mix of color spaces and profiles. Selecting the best device may also depend on whether the type of print job is considered to be Job-Balancing or Job-Splitting. With Job-Balancing, at least one of the metrics is used: (i) Intersection Gamut Volume, (ii) Gamut Similarity, or (iii) Mismatch Between Document Colors and Intersection Gamut for device selection. With Job-Splitting, at least one of these metrics are used: (i) Individual Gamut Volume, or (ii) Mismatch Between Document Colors and Device Gamut. Colorimetric definition of the selected colors can be retrieved from either an embedded source profile or by default and mapping the colors to the output gamut.
Owner:XEROX CORP

System and method for selecting the best set of devices for rendering color documents

The system for selecting a best device for rendering a color document involves first determining the types of color data included in the color document to be printed. Once the type of color data has been determined, the color characteristics are matched against the strengths of the available output devices to obtain a list of devices best suited for this particular color print job. At least one device from the list of best devices is selected and the color document is rendered onto the selected device. Preferably, the types of color data involved are determined by the mix of defined colorimetry and undefined colorimetry in the color document. Alternatively, the types of color data are determined by analyzing the colorspaces in the document (i.e., RGB, CMYK, LAB, XYZ, etc.), and the embedded profiles, if any, in the document (e.g., sRGB, SWOPCMYK, Euroscale). In the instance wherein a number of devices match the criteria for selection, only those devices which honor embedded color profiles are selected for documents containing embedded profiles. Alternatively, only those devices are selected that produce a consistent rendering across multiple color spaces and profiles for documents with a mix of color spaces and profiles. Selecting the best device may also depend on whether the type of print job is considered to be Job-Balancing or Job-Splitting. With Job-Balancing, at least one of the metrics is used: (i) Intersection Gamut Volume, (ii) Gamut Similarity, or (iii) Mismatch Between Document Colors and Intersection Gamut for device selection. With Job-Splitting, at least one of these metrics are used: (i) Individual Gamut Volume, or (ii) Mismatch Between Document Colors and Device Gamut. Colorimetric definition of the selected colors can be retrieved from either an embedded source profile or by default and mapping the colors to the output gamut.
Owner:XEROX CORP

Translation evaluation based optimized spectrum image data fusion method

The present invention discloses a translation evaluation based optimized spectrum image data fusion method, and belongs to the technical field of hyper spectrum image data fusion. The method of the present invention includes the steps: firstly classifying pixel vectors of a data matrix to obtain a class matrix; using a dimensionality reduction and projection matrix with changed principal components of the class matrix to project the data matrix for obtaining a dimensionality reduction data matrix; then assigning the dimensionality reduction data matrix to black and white, red and green, and yellow and blue channels to a coloring matching space for conversion into an sRGB color space to obtain color component data of the R, G, and B channels; comprehensively evaluating serial digital images to obtain an optimal translation amount of each channel through translation mapping of the color component data; and finally using three optimal translation amounts to respectively translate and map the color component data of each channel to obtain a fusion result image. An optimal translation amount fusion method is utilized to obtain a pseudo-color fusion image of high luminance, increases the contrast and color distinction degree of the image, and facilitates rapid identification of a target by human eyes from a complex background.
Owner:西安应用光学研究所
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products