Preparation method of ozone heterogeneous oxidation solid catalyst

A heterogeneous oxidation, solid catalyst technology, applied in catalyst activation/preparation, physical/chemical process catalysts, metal/metal oxide/metal hydroxide catalysts, etc., can solve the problem of easy loss of catalytic activity and low catalyst adsorption , Poor anti-toxicity and other problems, to achieve the effects of improving anti-toxicity and catalytic activity, inhibiting melting and precipitation, and strong adsorption

Inactive Publication Date: 2017-09-15
SICHUAN NORMAL UNIVERSITY
View PDF0 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In view of the problems of low catalyst adsorption, poor anti-toxicity and easy loss of catalytic activity in the current preparation method of ozone heterogeneous oxidation solid catalyst, a multi-component porous carrier was developed to enhance the adsorption of the catalyst through pore expansion and surface activation. Rare-earth organometallic compounds as catalyst precursors, common transition metal organic compounds and noble metal compounds as catalyst active center precursors, and multi-component porous supports are prepared by hydrothermal reaction and high-temperature calcination to prepare multi-metal-containing ozone heterogeneous oxidation The preparation method of solid catalyst to improve the anti-toxicity and catalytic activity of the catalyst is characterized in that component A and deionized water are added into a sealable reactor and stirred to prepare an aqueous solution, and the weight concentration of component A is controlled to be 2% to 6%. After the preparation is completed, add component B under stirring, raise the temperature to 35°C-50°C, continue to stir for 3h-6h,

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Preparation method of ozone heterogeneous oxidation solid catalyst
  • Preparation method of ozone heterogeneous oxidation solid catalyst

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0007] Example 1: 1.35g lithium hypochlorite, 1.65g bis(acetylacetone) beryllium, 140ml deionized water were added to a 500ml sealable reactor and stirred and mixed uniformly. The weight concentration of the aqueous solution was 2.1%. The weight ratio of lithium chlorate: bis(acetylacetone) beryllium=1:1.2; 2.75g wheat rice which is washed with deionized water until it is neutral, dried at 103°C to remove water, and then sieved through -200 mesh to +400 mesh standard sieve The weight of stone, 3.75g wollastonite, 4.75g dolomite, 5.75g calcite, 6.75g hydrotalcite, 7.75g magnesia, lithium hypochlorite and bis(acetylacetone) beryllium weight (3g): weight of porous material (31.5g)=1:10.5, heat up to 36°C, continue to stir and react for 3.2h, filter, dry at 103°C to obtain 31g of expanded modified carrier; put 31g of expanded modified carrier in a 500ml ultrasonic reactor , Then add 3.25g tetradecyltributylammonium chloride in 100ml deionized water solution, the weight concentratio...

Embodiment 2

[0008] Example 2: 0.24g lithium hypochlorite, 0.36g bis(acetylacetone) beryllium, 10ml deionized water were added to a 100ml sealable reactor and stirred and mixed uniformly. The weight concentration of the aqueous solution was 5.7%. The weight ratio of lithium chlorate: bis(acetylacetone) beryllium=1:1.5; 1.45g wheat rice which is washed with deionized water until it is neutral, dried at 103℃ to remove water, and then sieved through -200 mesh to +400 mesh standard sieve Weight of stone, 1.65g wollastonite, 1.85g dolomite, 2.05g calcite, 2.25g hydrotalcite, 2.45g magnesia, lithium hypochlorite and bis(acetylacetone) beryllium weight (0.6g): of porous material Weight (11.7g)=1:19.5, heat up to 48°C, continue to stir and react for 5.8h, filter, dry at 105°C to obtain 11.5g of expanded modified carrier; put into the expanded modified carrier in a 100ml ultrasonic reactor Carrier 11.5g, then add 2.2g tetradecyltributylammonium chloride in 26ml deionized water solution, the weight c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a preparation method of a solid catalyst for ozone heterogeneous oxidation, which belongs to the technical fields of environmental protection and chemical catalysts. Use medical stone, wollastonite, dolomite, calcite, hydrotalcite and langbeinite as the carrier, expand the pores with lithium hypochlorite and bis(acetylacetonate) beryllium, add tetradecyltributylammonium chloride After the activation treatment under the action of ultrasonic waves, the carrier is mixed with the composite mineralizer borax and potassium sulfate in a hydrothermal reactor, and the precursors of the catalytic activity assistant scandium(III) isopropoxide, tri(4,4,4-trifluoro ‑1‑(2‑thiophene)‑1,3‑butanedione) europium, tris[N,N‑bis(trimethylsilyl)amine] erbium, thulium(III) trifluoromethanesulfonate, catalytic active center precursors Titanocene ring substituted salicylic acid complex, zinc lactate, catechol ethylenediamine tungsten complex and terpyridyl ruthenium chloride hexahydrate, in N-decyldimethyl-N'-trimethyl Hydrothermal reaction under the action of 2-hydroxypropyl ammonium chloride, drying to remove moisture, burning in a muffle furnace to obtain a solid catalyst for ozone heterogeneous oxidation.

Description

Technical field [0001] The invention relates to a preparation method of a solid catalyst for ozone heterogeneous oxidation, belonging to the technical field of environmental protection and chemical catalysts. Background technique [0002] Ozone oxidation technology takes advantage of the strong ability of ozone to oxidize and decompose many organic pollutants, and is widely used in wastewater treatment. Ozone catalytic oxidation technology is divided into homogeneous catalytic oxidation of ozone and heterogeneous catalytic oxidation of ozone. In homogeneous catalytic oxidation of ozone, the catalyst is difficult to separate and recycle and reuse, and the low utilization rate of ozone leads to higher water treatment operating costs and removal of organic pollutants. The low rate and easy to cause secondary pollution of water make its application limited; the ozone heterogeneous catalytic oxidation technology has catalysts that are easy to separate and recover and can be reused, hi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B01J23/652B01J35/10B01J37/08B01J37/10B01J37/34B01J20/20B01J20/28B01J20/30
CPCB01J23/6527B01J20/06B01J20/20B01J20/28054B01J35/10B01J37/084B01J37/10B01J37/343
Inventor 朱明苏智岳馥莲
Owner SICHUAN NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products