Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

89 results about "Mechanical ventilator" patented technology

Method and apparatus for attenuating compressor noise

The invention comprises a method and apparatus for reducing the noise generated by compressors, including Roots-type blowers. The invention has particular use for reducing noise generated by compressors used in mechanical ventilators, though the advantages thereof may be realized in many different applications. One embodiment of the invention comprises a noise-attenuating gas flow path for a compressor contained in a portable ventilator housing. In one embodiment, the gas flow path comprises a plurality of chambers interconnected by flow tubes. The flow path is folded so as to fit into the limited space of a portable ventilator housing. The dimensions of the chambers and the flow tubes are selected so that an impedance mismatch is created between the chambers and the flow tubes. In one embodiment of the invention, the flow path comprises one or more perforated tubes located in one or more of the chambers. The perforated tube has a port through which gas is accepted and at least one exterior tube through which gas exits. Impedance mismatches are created between the inlet chamber and the exterior tubes and between the exterior tubes and the chamber in which the perforated tube is located, which are useful in attenuating noise. One embodiment of the invention comprises a noise attenuating mounting system for a compressor. The mounting system comprises flexible mounts that cooperate to dampen vibrations generated by the compressor.
Owner:VYAIRE MEDICAL 203 INC

Method and apparatus for attenuating compressor noise

The invention comprises a method and apparatus for reducing the noise generated by compressors, including Roots-type blowers. The invention has particular use for reducing noise generated by compressors used in mechanical ventilators, though the advantages thereof may be realized in many different applications. One embodiment of the invention comprises a noise-attenuating gas flow path for a compressor contained in a portable ventilator housing. In one embodiment, the gas flow path comprises a plurality of chambers interconnected by flow tubes. The flow path is folded so as to fit into the limited space of a portable ventilator housing. The dimensions of the chambers and the flow tubes are selected so that an impedance mismatch is created between the chambers and the flow tubes. In one embodiment of the invention, the flow path comprises one or more perforated tubes located in one or more of the chambers. The perforated tube has a port through which gas is accepted and at least one exterior tube through which gas exits. Impedance mismatches are created between the inlet chamber and the exterior tubes and between the exterior tubes and the chamber in which the perforated tube is located, which are useful in attenuating noise. One embodiment of the invention comprises a noise attenuating mounting system for a compressor. The mounting system comprises flexible mounts that cooperate to dampen vibrations generated by the compressor.
Owner:VYAIRE MEDICAL 203 INC

System and method for providing mechanical ventilation support to a patient

The present invention relates to a system and a method for providing mechanical ventilation support to a patient. The system for providing mechanical ventilation support to a patient and includes a mechanical ventilator (26). A breathing circuit (14) is pneumatically connected between the mechanical ventilator (26) and a patient connection (22). An inspiratory check valve (30) is disposed within an inspiratory limb (16) of the breathing circuit (14). A fresh gas manifold (38) provides fresh gas to the breathing circuit (14) for delivery to the patient. A fresh gas valve (52) is disposed between the fresh gas manifold (38) and the breathing circuit (14). The fresh gas valve (52) is operable between a first position which directs fresh gas upstream of the inspiratory check valve (30) and a second position that directs fresh gas downstream of the inspiratory check valve (30). A digital signal processor (44) operates the fresh gas valve (52) selectively between the first position and the second position. A method of ventilating a patient includes introducing a flow of fresh gas into an inspiratory limb (16) of the breathing circuit (14). A ventilatory support value is sensed with at least one sensor (62, 64) disposed within the breathing circuit (14). An operational condition of the breathing circuit (14) is identified with a digital signal processor (44). A fresh gas valve (52) is operated with the digital processor (44) between a first position that directs fresh gas to the inspiratory limb (16) upstream from the inspiratory check valve (30) and a second position that directs the fresh gas downstream from the inspiratory check valve (30).
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products