Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1235 results about "Breathing gas" patented technology

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common, and only natural, breathing gas. But other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

Metabolic calorimeter employing respiratory gas analysis

An indirect calorimeter for measuring the metabolic rate of a subject includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes, a flow pathway, and a hygiene barrier positioned to block a predetermined pathogen from the exhaled gases. The indirect calorimeter also includes a flow pathway having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The flow pathway includes a flow tube through which the inhaled and exhaled gases pass, an outer housing surrounding the flow tube, and a chamber disposed between the flow tube and the first end. The indirect calorimeter also includes a flow meter configured to generate electrical signals as a function of the instantaneous flow volume of inhaled and exhaled gases passing through the flow pathway, and a component gas concentration sensor operable to generate electrical signals as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases as the gases pass through the flow pathway. The indirect calorimeter further includes a computation unit operable to receive the electrical signals from the flow meter and the concentration sensor and operative to calculate at least one respiratory parameter for the subject as the subject breathes through the calorimeter.
Owner:MICROLIFE MEDICAL HOME SOLUTIONS

Methods, systems and devices for improving ventilation in a lung area

Methods, systems and devices are described for new modes of ventilation in which specific lung areas are ventilated with an indwelling trans-tracheobronchial catheter for the purpose of improving ventilation and reducing hyperinflation in that specific lung area, and for redistributing inspired air to other healthier lung areas, for treating respiratory disorders such as COPD, ARDS, SARS, CF, and TB. Trans-Tracheobronchial Segmental Ventilation (TTSV) is performed on either a naturally breathing or a mechanical ventilated patient by placing a uniquely configured indwelling catheter into a bronchus of a poorly ventilated specific lung area and providing direct ventilation to that area. The catheter can be left in place for extended periods without clinician attendance or vigilance. Ventilation includes delivery of respiratory gases, therapuetic gases or agents and evacuation of stagnant gases, mixed gases or waste fluids. Typically the catheter's distal tip is anchored without occluding the bronchus but optionally may intermittently or continuously occlude the bronchus. TTSV is optionally performed by insufflation only of the area, or by application of vacuum to the area, can include elevating or reducing the pressure in the targeted area to facilitate stagnant gas removal, or can include blocking the area to divert inspired gas to better functioning areas.
Owner:BREATHE TECHNOLOGIES INC

Methods, systems and devices for improving ventilation in a lung area

ActiveUS7588033B2Effective and direct cannulationIncrease hyperinflationTracheal tubesOperating means/releasing devices for valvesDiseasePrimary bronchus
Methods, systems and devices are described for new modes of ventilation in which specific lung areas are ventilated with an indwelling trans-tracheobronchial catheter for the purpose of improving ventilation and reducing hyperinflation in that specific lung area, and for redistributing inspired air to other healthier lung areas, for treating respiratory disorders such as COPD, ARDS, SARS, CF, and TB. Trans-Tracheobronchial Segmental Ventilation (TTSV) is performed on either a naturally breathing or a mechanical ventilated patient by placing a uniquely configured indwelling catheter into a bronchus of a poorly ventilated specific lung area and providing direct ventilation to that area. The catheter can be left in place for extended periods without clinician attendance or vigilance. Ventilation includes delivery of respiratory gases, therapeutic gases or agents and evacuation of stagnant gases, mixed gases or waste fluids. Typically the catheter's distal tip is anchored without occluding the bronchus but optionally may intermittently or continuously occlude the bronchus. TTSV is optionally performed by insufflation only of the area, or by application of vacuum to the area, can include elevating or reducing the pressure in the targeted area to facilitate stagnant gas removal, or can include blocking the area to divert inspired gas to better functioning areas.
Owner:BREATHE TECHNOLOGIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products