Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

50 results about "Qos aware" patented technology

Using heart beats to monitor operational state of service classes of a QOS aware network link

Some embodiments provide a method for quantifying quality of several service classes provided by a link between first and second forwarding nodes in a wide area network (WAN). At a first forwarding node, the method computes and stores first and second path quality metric (PQM) values based on packets sent from the second forwarding node for the first and second service classes. The different service classes in some embodiments are associated with different quality of service (QoS) guarantees that the WAN offers to the packets. In some embodiments, the computed PQM value for each service class quantifies the QoS provided to packets processed through the service class. In some embodiments, the first forwarding node adjusts the first and second PQM values as it processes more packets associated with the first and second service classes. The first forwarding node also periodically forwards to the second forwarding node the first and second PQM values that it maintains for the first and second service classes. In some embodiments, the second forwarding node performs a similar set of operations to compute first and second PQM values for packets sent from the first forwarding node for the first and second service classes, and to provide these PQM values to the first forwarding node periodically.
Owner:VMWARE INC

Dynamically assigning service classes for a QOS aware network link

Some embodiments provide a method for quantifying quality of several service classes provided by a link between first and second forwarding nodes in a wide area network (WAN). At a first forwarding node, the method computes and stores first and second path quality metric (PQM) values based on packets sent from the second forwarding node for the first and second service classes. The different service classes in some embodiments are associated with different quality of service (QoS) guarantees that the WAN offers to the packets. In some embodiments, the computed PQM value for each service class quantifies the QoS provided to packets processed through the service class. In some embodiments, the first forwarding node adjusts the first and second PQM values as it processes more packets associated with the first and second service classes. The first forwarding node also periodically forwards to the second forwarding node the first and second PQM values that it maintains for the first and second service classes. In some embodiments, the second forwarding node performs a similar set of operations to compute first and second PQM values for packets sent from the first forwarding node for the first and second service classes, and to provide these PQM values to the first forwarding node periodically.
Owner:VMWARE INC

Architecture and method for high performance on demand video transcoding

Video streams, either in form of on-demand streaming or live streaming, usually have to be transcoded based on the characteristics of clients' devices. Transcoding is a computationally expensive and time-consuming operation; therefore, streaming service providers currently store numerous transcoded versions of the same video to serve different types of client devices. Due to the expense of maintaining and upgrading storage and computing infrastructures, many streaming service providers recently are becoming reliant on cloud services. However, the challenge in utilizing cloud services for video transcoding is how to deploy cloud resources in a cost-efficient manner without any major impact on the quality of video streams. To address this challenge, in this paper, the Cloud-based Video Streaming Service (CVSS) architecture is disclosed to transcode video streams in an on-demand manner. The architecture provides a platform for streaming service providers to utilize cloud resources in a cost-efficient manner and with respect to the Quality of Service (QoS) demands of video streams. In particular, the architecture includes a QoS-aware scheduling method to efficiently map video streams to cloud resources, and a cost-aware dynamic (i.e., elastic) resource provisioning policy that adapts the resource acquisition with respect to the video streaming QoS demands. Simulation results based on realistic cloud traces and with various workload conditions, demonstrate that the CVSS architecture can satisfy video streaming QoS demands and reduces the incurred cost of stream providers up to 70%.
Owner:UNIVERSITY OF LOUISIANA AT LAFAYETTE

Using heart beats to monitor operational state of service classes of a QoS aware network link

Some embodiments provide a method for quantifying quality of several service classes provided by a link between first and second forwarding nodes in a wide area network (WAN). At a first forwarding node, the method computes and stores first and second path quality metric (PQM) values based on packets sent from the second forwarding node for the first and second service classes. The different service classes in some embodiments are associated with different quality of service (QoS) guarantees that the WAN offers to the packets. In some embodiments, the computed PQM value for each service class quantifies the QoS provided to packets processed through the service class. In some embodiments, the first forwarding node adjusts the first and second PQM values as it processes more packets associated with the first and second service classes. The first forwarding node also periodically forwards to the second forwarding node the first and second PQM values that it maintains for the first and second service classes. In some embodiments, the second forwarding node performs a similar set of operations to compute first and second PQM values for packets sent from the first forwarding node for the first and second service classes, and to provide these PQM values to the first forwarding node periodically.
Owner:VMWARE INC

Quality of service (QoS) aware self-adaptive bandwidth distribution system for wireless-optical broadband access networks (WOBAN) and self-adaptive bandwidth distribution method

InactiveCN102571583ARealize seamless transmissionGood web service performanceData switching networksWireless communicationWireless networkBandwidth distribution
A quality of service (QoS) aware self-adaptive bandwidth distribution system for wireless-optical broadband access networks (WOBAN) comprises optical line terminal devices, optical network unit, function integrating devices of wireless stations (BSs) and user terminals. The optical line terminal devices are respectively connected with a plurality of the function integrating devices through a light distribution network, and the plurality of the function integrating devices are covered at a plurality of user terminals within a governance range through a wireless network. The optical line terminal devices are used for distributing bandwidths to optical branching filters (OBFs) and wireless sub-networks governed by the OBFs. The function integrating devices are used for distributing bandwidths to user terminals governed by the OBFs according to business types at different priority levels and achieve smooth transition and transmission of data or business between optical fiber domains and wireless domains. A self-adaptive bandwidth distribution method is provided. The QoS aware self-adaptive bandwidth distribution system for the WOBAN and the self-adaptive bandwidth distribution method reasonably distribute and dispatch bandwidth resources according to bandwidth request information of users and server priority levels of different request business.
Owner:ZHEJIANG UNIV OF TECH

System for high performance on-demand video transcoding

ActiveUS20190335214A1Decrease deadline miss rate and startup delayMinimize incurred costResource allocationDigital video signal modificationCloud baseService provision
Video streams, either in form of on-demand streaming or live streaming, usually have to be transcoded based on the characteristics of clients' devices. Transcoding is a computationally expensive and time-consuming operation; therefore, streaming service providers currently store numerous transcoded versions of the same video to serve different types of client devices. Due to the expense of maintaining and upgrading storage and computing infrastructures, many streaming service providers recently are becoming reliant on cloud services. However, the challenge in utilizing cloud services for video transcoding is how to deploy cloud resources in a cost-efficient manner without any major impact on the quality of video streams. To address this challenge, in this paper, the Cloud-based Video Streaming Service (CVSS) architecture is disclosed to transcode video streams in an on-demand manner. The architecture provides a platform for streaming service providers to utilize cloud resources in a cost-efficient manner and with respect to the Quality of Service (QoS) demands of video streams. In particular, the architecture includes a QoS-aware scheduling method to efficiently map video streams to cloud resources, and a cost-aware dynamic (i.e., elastic) resource provisioning policy that adapts the resource acquisition with respect to the video streaming QoS demands. Simulation results based on realistic cloud traces and with various workload conditions, demonstrate that the CVSS architecture can satisfy video streaming QoS demands and reduces the incurred cost of stream providers up to 70%.
Owner:UNIVERSITY OF LOUISIANA AT LAFAYETTE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products