Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1038 results about "Networks on chip" patented technology

A network on a chip or network-on-chip ( NoC /ˌɛnˌoʊˈsiː/ en-oh-SEE or /nɒk/ knock) is a network -based communications subsystem on an integrated circuit ("microchip"), most typically between modules in a system on a chip (SoC). The modules on the IC are typically semiconductor IP cores schematizing various...

Directional two-dimensional router and interconnection network for field programmable gate arrays, and other circuits and applications of the router and network

A configurable directional 2D router for Networks on Chips (NOCs) is disclosed. The router, which may be bufferless, is designed for implementation in programmable logic in FPGAs, and achieves theoretical lower bounds on FPGA resource consumption for various applications. The router employs an FPGA router switch design that consumes only one 6-LUT or 8-input ALM logic cell per router per bit of router link width. A NOC comprising a plurality of routers may be configured as a directional 2D torus, or in diverse ways, network sizes and topologies, data widths, routing functions, performance-energy tradeoffs, and other options. System on chip designs may employ a plurality of NOCs with different configuration parameters to customize the system to the application or workload characteristics. A great diversity of NOC client cores, for communication amongst various external interfaces and devices, and on-chip interfaces and resources, may be coupled to a router in order to efficiently communicate with other NOC client cores. The router and NOC enable feasible FPGA implementation of large integrated systems on chips, interconnecting hundreds of client cores over high bandwidth links, including compute and accelerator cores, industry standard IP cores, DRAM / HBM / HMC channels, PCI Express channels, and 10G / 25G / 40G / 100G / 400G networks.
Owner:GRAY RES LLC

Reconfigurable network on a chip

An architecture for a reconfigurable network that can be implemented on a semiconductor chip is disclosed, which includes a hierarchical organization of network components and functions that are readily programmable and highly flexible. Essentially, a reconfigurable network on a chip is disclosed, which includes aspects of reconfigurable computing, system on a chip, and network on a chip designs. More precisely, a reconfigurable network on a chip includes a general purpose microprocessor for implementing software tasks, a plurality of on-chip memories for facilitating the processing of large data structures as well as processor collaboration, a plurality of reconfigurable execution units including self-contained, individually reconfigurable programmable logic arrays, a plurality of configurable system interface units that provide interconnections between on-chip memories, networks or buses, an on-chip network including a network interconnection interface that enables communication between all reconfigurable execution units, configurable system interface units and general purpose microprocessors, a fine grain interconnect unit that gathers associated input / output signals for a particular interface and attaches them to a designated system interface resource, and a plurality of input / output blocks that supply the link between an on-chip interface resource and a particular external network or device interface. Advantageously, the network minimizes the configuration latency of the reconfigurable execution units and also enables reconfiguration on-the-fly.
Owner:HONEYWELL INT INC

Asynchronous switch based on butterfly fat-tree for network on chip application

The present invention disclosed herein is an asynchronous switch for an network on chip application making possible between IP (Intellectual Property) communication among various IPs in the network on chip. The asynchronous switch according to the present invention in which comprises a data input unit for receiving and storing a plurality of data flits, and confirming whether a kind of each data flit is a header flit or a payload flit according to a transmission request signal; an output port arbitration unit for outputting an output port selection signal showing a output priority of the data by receiving a header flit request signal, final payload flit process request signal, routing information of the header flit, and the a arbitration request signal from the data input unit; and a data output unit for receiving a header storage request signal and a payload storage request signal from the data input unit, temporarily storing the data flit inputted from the data transmission path setting unit, transferring header and payload storage completion signals indicating that the data flit is stored to the data input unit, and outputting the temporarily stored data flit to a designated port according to a pre-set order.
Owner:GWANGJU INST OF SCI & TECH

Weight factor based allocation of time slot to use link in connection path in network on chip IC

An integrated circuit comprising a plurality of processing modules (M, S; IP) and a network (N) arranged for coupling said modules (M, S; IP) is provided. Said integrated circuit further comprises a plurality of network interfaces (NI) each being coupled between one of said processing modules (M, S; IP) and said network (N). Said network (N) comprises a plurality of routers (R) coupled via network links (L) to adjacent routers (R). Said processing modules (M, S; IP) communicate between each other over connections using connection paths (C1-C12) through the network (N), wherein each of said connection paths (C1-C12) employ at least one network link (L) for a required number of time slots. At least one time slot allocating unit (SA) is provided for computing a link weight factor for at least one network link (L) in said connection path (C1-C12) as a function of at least one connection requirement for said at least one network link (L), for computing a connection path weight factor for at least one connection path (C1-C12) as a function of the computed link weight factor of at least one network link (L) in said connection path (C1-C12), and for allocating time slots to said network links (L) according to the computed connection path weight factors.
Owner:KONINK PHILIPS ELECTRONICS NV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products