Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

38results about How to "Securely making" patented technology

Device, System and Method for Fast Secure Message Encryption Without Key Distribution

One party sends a securely encrypted message to a second party. Each party chooses a secret message key for the message, which is never shared with or transmitted to any other party. The message is sent by means of three encrypted messages. The first encrypted message is sent from the sender to the receiver, and is encrypted by the sender's key. The second encrypted message is sent from the receiver back to the sender, and is encrypted by both the sender's key and then by the receiver's key. The third encrypted message is sent from the sender back to the receiver, and is encrypted by only the receiver's key following removal of the sender's key. Finally, the receiver decrypts the third message. The messages are sent in blocks. Encryption consists of multiplying each block of the message by square matrices of the same size as the block, and decryption consists of multiplying by the inverse matrices. The key matrices are taken from one or more large commutative families of matrices. This commutativity allows the sender's keys to be removed even though the message block has been encrypted by the sender's key first and then the receiver's key. Two primary embodiments of the invention are disclosed, using one-sided and two-sided matrix multiplication, respectively.
Owner:RUBIN FR

Device, system and method for fast secure message encryption without key distribution

One party sends a securely encrypted message to a second party. Each party chooses a secret message key for the message, which is never shared with or transmitted to any other party. The message is sent by means of three encrypted messages. The first encrypted message is sent from the sender to the receiver, and is encrypted by the sender's key. The second encrypted message is sent from the receiver back to the sender, and is encrypted by both the sender's key and then by the receiver's key. The third encrypted message is sent from the sender back to the receiver, and is encrypted by only the receiver's key following removal of the sender's key. Finally, the receiver decrypts the third message. The messages are sent in blocks. Encryption consists of multiplying each block of the message by a square matrix of the same size as the block, and decryption consists of multiplying by the inverse matrix. The key matrices are taken from one or more large commutative families of matrices. This commutativity allows the sender's keys to be removed even though the message block has been encrypted by the sender's key first and then the receiver's key. Two primary embodiments of the invention are disclosed, using one-sided and two-sided matrix multiplication, respectively.
Owner:RUBIN FR

Device, System and Method for Cryptographic Key Exchange

A method is disclosed whereby two parties can establish a cryptographic key for secure communications without any prior distribution of secret keys or other secret data, and without revealing said key to any third party who may have access to all of the transmissions between them. The method has both one-sided and two-sided embodiments. In the one-sided embodiments the two parties agree upon a matrix M, and independently choose matrices S and R from an established commutative family of square matrices. The sender transmits the matrix SM to the receiver and the receiver transmits the matrix RM to the sender. The sender computes the matrix SRM from the received matrix RM, and the receiver computes the matrix RSM from the received matrix SM. Since the matrices S and R commute, SRM=RSM. The value of the matrix SRM is then used to produce the desired cryptographic key. In the two-sided embodiments the two parties agree upon a matrix M, and two commutative families of square matrices F and G. The sender chooses a matrix S from F and a matrix T from G. The receiver independently chooses a matrix R from F and a matrix Q from G. The sender transmits the matrix SMT to the receiver and the receiver transmits the matrix RMQ to the sender. The sender computes the matrix SRMQT from the received matrix RMQ, and the receiver computes the matrix RSMTQ from the received matrix SMT. Since the matrices S and R commute, and the matrices T and Q commute, SRMQT=RSMTQ. The value of the matrix SRMTQ is then used to produce the desired cryptographic key.
Owner:RUBIN FR

Device, System and Method for Fast Secure Message Encryption Without Key Distribution

One party sends a securely encrypted message to a second party. Each party chooses a secret message key for the message, which is never shared with or transmitted to any other party. The message is sent by means of three encrypted messages. The first encrypted message is sent from the sender to the receiver, and is encrypted by the sender's key. The second encrypted message is sent from the receiver back to the sender, and is encrypted by both the sender's key and then by the receiver's key. The third encrypted message is sent from the sender back to the receiver, and is encrypted by only the receiver's key following removal of the sender's key. Finally, the receiver decrypts the third message. The messages are sent in blocks. Encryption consists of multiplying each block of the message by a square matrix of the same size as the block, and decryption consists of multiplying by the inverse matrix. The key matrices are taken from one or more large commutative families of matrices. This commutativity allows the sender's keys to be removed even though the message block has been encrypted by the sender's key first and then the receiver's key. Two primary embodiments of the invention are disclosed, using one-sided and two-sided matrix multiplication, respectively.
Owner:RUBIN FR

Device, System and Method for Cryptographic Key Exchange

A method is disclosed whereby two parties can establish a cryptographic key for secure communications without any prior distribution of secret keys or other secret data, and without revealing said key to any third party who may have access to all of the transmissions between them. The method has both one-sided and two-sided embodiments. In the one-sided embodiments the two parties agree upon a matrix M, and independently choose matrices S and R from an established commutative family of square matrices. The sender transmits the matrix SM to the receiver and the receiver transmits the matrix RM to the sender. The sender computes the matrix SRM from the received matrix RM, and the receiver computes the matrix RSM from the received matrix SM. Since the matrices S and R commute, SRM=RSM. The value of the matrix SRM is then used to produce the desired cryptographic key. In the two-sided embodiments the two parties agree upon a matrix M, and two commutative families of square matrices F and G. The sender chooses a matrix S from F and a matrix T from G. The receiver independently chooses a matrix R from F and a matrix Q from G. The sender transmits the matrix SMT to the receiver and the receiver transmits the matrix RMQ to the sender. The sender computes the matrix SRMQT from the received matrix RMQ, and the receiver computes the matrix RSMTQ from the received matrix SMT. Since the matrices S and R commute, and the matrices T and Q commute, SRMQT=RSMTQ. The value of the matrix SRMTQ is then used to produce the desired cryptographic key.
Owner:RUBIN FR

Device, system and method for fast secure message encryption without key distribution

One party sends a securely encrypted message to a second party. Each party chooses a secret message key for the message, which is never shared with or transmitted to any other party. The message is sent by means of three encrypted messages. The first encrypted message is sent from the sender to the receiver, and is encrypted by the sender's key. The second encrypted message is sent from the receiver back to the sender, and is encrypted by both the sender's key and then by the receiver's key. The third encrypted message is sent from the sender back to the receiver, and is encrypted by only the receiver's key following removal of the sender's key. Finally, the receiver decrypts the third message. The messages are sent in blocks. Encryption consists of multiplying each block of the message by square matrices of the same size as the block, and decryption consists of multiplying by the inverse matrices. The key matrices are taken from one or more large commutative families of matrices. This commutativity allows the sender's keys to be removed even though the message block has been encrypted by the sender's key first and then the receiver's key. Two primary embodiments of the invention are disclosed, using one-sided and two-sided matrix multiplication, respectively.
Owner:RUBIN FR

Device, system and method for cryptographic key exchange

A method is disclosed whereby two parties can establish a cryptographic key for secure communications without any prior distribution of secret keys or other secret data, and without revealing said key to any third party who may have access to all of the transmissions between them. The two parties agree upon a matrix M, and independently choose matrices S and R from an established commutative family of square matrices. The sender transmits the matrix SM to the receiver and the receiver transmits the matrix RM to the sender. The sender computes the matrix SRM from the received matrix RM, and the receiver computes the matrix RSM from the received matrix SM. Since the matrices S and R commute, SRM=RSM. The value of the matrix SRM is then used to produce the desired cryptographic key.In the two-sided embodiments the two parties agree upon a matrix M, and two commutative families of square matrices F and G. The sender chooses a matrix S from F and a matrix T from G. The receiver independently chooses a matrix R from F and a matrix Q from G. The sender transmits the matrix SMT to the receiver and the receiver transmits the matrix RMQ to the sender. The sender computes the matrix SRMQT from the received matrix RMQ, and the receiver computes the matrix RSMTQ from the received matrix SMT. Since the matrices S and R commute, and the matrices T and Q commute, SRMQT=RSMTQ. The value of the matrix SRMTQ is then used to produce the desired cryptographic key.
Owner:RUBIN FR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products