Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

109 results about "Standard dynamic range" patented technology

A Standard Dynamic Range, or SDR, display uses a conventional EOTF curve, typically with 8 bits of color depth. This limits the contrast ratio for display to about 1,200 to 1. In SDR displays, the backlight is used to simply provide uniform light.

Generative adversarial network-based high dynamic range inverse tone mapping method and system

The present invention provides a generative adversarial network-based high dynamic range inverse tone mapping method and system. The method includes the following steps that: an original high dynamicrange video is read, and the original high dynamic range video is cut and converted into data sets which can be used for training and are corresponding to a standard dynamic range and a high dynamic range respectively; a generative adversarial network is established based on a convolutional neural network and a hopping type connection is established, and standard dynamic range images are convertedinto high dynamic range images, namely inverse tone mapping is performed; and the entire generative adversarial network is continuously optimized according to a set comprehensive objective function,and a finally obtained network can complete mapping from the standard dynamic range to the high dynamic range. With the method of the invention adopted, the problems such as non-linearity insufficiency and complicated parameter adjustment of an existing non-learning method can be solved; the one-dimensional characteristic and gradient characteristic of the high dynamic range images are considered,so that inverse dynamic mapping of the high dynamic range can be better realized.
Owner:SHANGHAI JIAO TONG UNIV

Multi-exposure high-dynamic range inverse tone mapping model construction method and device

The invention provides a multi-exposure high-dynamic range inverse tone mapping model construction method and device. The multi-exposure high-dynamic range inverse tone mapping model construction method comprises the following steps: intercepting a high dynamic range image from an original high dynamic range video, converting the standard dynamic range images into standard dynamic range images, adjusting exposure time to generate multi-exposure standard dynamic range images, and forming a supervised data set by the standard dynamic range images with different exposures and a high dynamic rangeimage with the same normal exposure to serve as a training data set; establishing a generative adversarial network based on a convolutional neural network and skip connection; and establishing a target loss function integrated by the image content features, the intrinsic features and the perception features for the generative adversarial network, and continuously training and optimizing by adopting the training data set to obtain a final model. According to the multi-exposure high-dynamic range inverse tone mapping model construction method, the brightness of the overexposure or underexposureimage can be adjusted, and the effect of the generated high-dynamic-range image is improved, and the brightness characteristic and the chrominance characteristic of the high-dynamic-range image are considered, and inverse tone mapping of the high dynamic range is better achieved.
Owner:SHANGHAI JIAO TONG UNIV

Video high dynamic range inverse tone mapping model construction and mapping method and device

The invention provides a video high dynamic range inverse tone mapping model construction method, which comprises the following steps of: cutting an original high dynamic range video into a pluralityof high dynamic range videos, converting the high dynamic range videos into standard dynamic range videos, and forming a supervised data set by the standard dynamic range videos and the high dynamic range videos to serve as a subsequent training data set; establishing a video generation network based on a three-dimensional convolutional neural network and skip connection; and establishing a targetloss function integrated by spatial features, time domain features, intrinsic features and perception features for the video generation network, and continuously training and optimizing by adopting the training data set to obtain a final network model. The invention also provides a corresponding construction device and a video high dynamic range inverse tone mapping method. According to the method, the problem of video flicker is solved, and the spatial characteristics, intrinsic characteristics and time domain characteristics of the high-dynamic-range video are considered, so that the inverse tone mapping of the high-dynamic-range video is better realized.
Owner:SHANGHAI JIAO TONG UNIV

Multi-range hdr video coding

At least some applications in the total HDR video chain desire some more sophisticated approach, such as a high dynamic range video encoder (900), arranged to receive via an image input (920) an input high dynamic range image (MsterHDR) which has a first maximum pixel luminance (PB_C_H50), the encoder being arranged to receive via a metadata input (921) a master luma mapping function (FL_50t1), which luma mapping function defines the relationship between normalized lumas of the input high dynamic range image and normalized lumas of a corresponding standard dynamic range image (Im_LDR) having a maximum pixel luminance of preferably 100 nit, characterized in that the encoder further comprises a metadata input (923) to receive a second maximum pixel luminance (PB_CH), and the encoder further being characterized in that it comprises: —a HDR function generation unit (901) arranged to apply a standardized algorithm to transform the master luma mapping function (FL_50t1) into a adapted luma mapping function (F_H2hCI), which relates normalized lumas of the input high dynamic range image to normalized luminances of an intermediate dynamic range image (IDR) which is characterized by having a maximum possible luminance being equal to the second maximum pixel luminance (PB_CH); an IDR image calculation unit (902) arranged to apply the adapted luma mapping function (F_H2hCI) to lumas of pixels of the input high dynamic range image (MsterHDR) to obtain lumas of pixels of the intermediate dynamic range image (IDR); and an IDR mapping function generator (903) arranged to derive on the basis of the master luma mapping function (FL_50t1) and the adapted luma mapping function (F_H2hCI) a channel luma mapping function (F_I2sCI), which defines as output the respective normalized lumas of the standard dynamic range image (Im_LDR) when given as input the respective normalized lumas of the intermediate dynamic range image (IDR); the encoder being further characterized to have as output: the intermediate dynamic range image (IDR), as first metadata the second maximum pixel luminance (PB_CH), as second metadata the channel luma mapping function (F_I2sCI); and as third metadata the first maximum pixel luminance (PB_C_H50).
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products