Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6374 results about "Colour image" patented technology

Method and system operative to process color image data

A method and system operative to process color image data are disclosed. In one embodiment, the method can comprise the steps of receiving color image data, determining the color ranges to be applied to the color image data, assigning each of the pixel positions in the image data a color range, assigning a different spatial binary pattern to each color range, and assigning each of the pixel positions a binary output pixel value that corresponds to the spatial binary pattern assigned to the color range assigned to that pixel position. The resulting binary image data can be written to a file for subsequent storage, transmission, processing, or retrieval and rendering. In other embodiments, a system can be made operative to accomplish the same.
Owner:HAND HELD PRODS

Image sensor with improved light sensitivity

An image sensor for capturing a color image is disclosed having a two-dimensional array having first and second groups of pixels wherein pixels from the first group of pixels have narrower spectral photoresponses than pixels from the second group of pixels and wherein the first group of pixels has individual pixels that have spectral photoresponses that correspond to a set of at least two colors. Further, the placement of the first and second groups of pixels defines a pattern that has a minimal repeating unit including at least twelve pixels. The minimal repeating unit has a plurality of cells wherein each cell has at least two pixels representing a specific color selected from the first group of pixels and a plurality of pixels selected from the second group of pixels arranged to permit the reproduction of a captured color image under different lighting conditions.
Owner:OMNIVISION TECH INC

Image ranking based on abstract concepts

A system and method for ranking images are provided. The method includes receiving a query comprising a semantic part and an abstract part, retrieving a set of images responsive to the semantic part of the query, and computing first scores for the retrieved images in the set of retrieved images. The first score of an image can be based on a relevance of that image to the semantic part of the query (and not to the abstract part of the query). The method further includes identifying a chromatic concept model from a set of chromatic concept models. This identification can be based on the abstract part of the query (and not on the semantic part of the query). The chromatic concept model includes an optionally-weighted set of colors expressed in a perceptually uniform color space. For retrieved images in the set of retrieved images, the method includes computing a chromatic image model based on colors of the image, the chromatic image model comprising a weighted set of colors expressed in the perceptually uniform color space and computing a comparison measure between the chromatic image model and the chromatic concept model. The retrieved images are scored with respective second scores that are based on the computed comparison measures. The retrieved images are ranked based on a combined score for a respective retrieved image which is a function of the first and second scores.
Owner:XEROX CORP

Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them

To provide a semiconductor light emitting device which is capable of accomplishing a broad color reproducibility for an entire image without losing brightness of the entire image.A light source provided on a backlight for a color image display device has a semiconductor light emitting device comprising a solid light emitting device to emit light in a blue or deep blue region or in an ultraviolet region and phosphors, in combination. The phosphors comprise a green emitting phosphor and a red emitting phosphor. The green emitting phosphor and the red emitting phosphor are ones, of which the rate of change of the emission peak intensity at 100° C. to the emission intensity at 25° C., when the wavelength of the excitation light is 400 nm or 455 nm, is at most 40%.
Owner:CITIZEN ELECTRONICS CO LTD +1

Penetrating endoscope and endoscopic surgical instrument with CMOS image sensor and display

A penetrating endoscope provides visualization of organ or tissue structures or foreign objects in a body. The penetrating endoscope includes an elongate penetrating member, a complementary metal dioxide semiconductor (CMOS) image sensor and an objective lens. The CMOS image sensor is substantially planar and includes a plurality of pixels with a pixel signal processing circuit for generating a color image ready signal. The CMOS image sensor converts image light energy into electrical color image ready signal energy for transmission out of the body. The color image ready signal is viewed on a color image display. The CMOS image sensor is carried on the elongate penetrating member adjacent a distal end of the elongate penetrating member. The objective lens is also carried on the distal end of the elongate penetrating member on an optical axis and focuses an image corresponding to an endoscope field of view at an image plane intersecting the optical axis. The CMOS image sensor is mounted with the CMOS image sensor pixels disposed substantially in the image plane and on the optical axis. The penetrating endoscope may include end effectors such as cutters and forceps.
Owner:YOON INBAE

Method for creating high resolution color image, system for creating high resolution color image and program creating high resolution color image

A limitation in the physical resolution of an image sensor offers a motivation to improve the resolution of an image. Super-resolution is mainly applied to gray scale images, and it has not been thoroughly investigated yet that a high resolution color image is reconstructed from an image sensor having a color filter array. An object of the invention is to directly reconstruct a high resolution color image from color mosaic obtained by an image sensor having a color filter array. A high resolution color image reconstruction method according to the invention is based on novel technique principles of color image reconstruction that an increase in resolution and demosaicing are performed at the same time. The verification and effective implement of the invention are also described.
Owner:TOKYO INST OF TECH

Color image sensor having imaging element array forming images on respective regions of sensor elements

The color image sensor generates a color image signal representing a subject and includes an optical substrate and a light sensor. The optical substrate includes spatially-separated imaging elements. Each of the imaging elements is configured to image light of a respective color. The light sensor includes regions of sensor elements disposed opposite respective ones of the imaging elements. The sensor elements in each of the regions are operable to generate a component of the color image signal in response to the light of the respective color incident on them.
Owner:APTINA IMAGING CORP

Color calibration of color image rendering devices

Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Owner:RAH COLOR TECH

Visual tracking using depth data

Real-time visual tracking using depth sensing camera technology, results in illumination-invariant tracking performance. Depth sensing (time-of-flight) cameras provide real-time depth and color images of the same scene. Depth windows regulate the tracked area by controlling shutter speed. A potential field is derived from the depth image data to provide edge information of the tracked target. A mathematically representable contour can model the tracked target. Based on the depth data, determining a best fit between the contour and the edge of the tracked target provides position information for tracking. Applications using depth sensor based visual tracking include head tracking, hand tracking, body-pose estimation, robotic command determination, and other human-computer interaction systems.
Owner:HONDA MOTOR CO LTD

Endoscope system, processor device thereof, and image producing method

First and second white light is generated by excitations of phosphors with first and second laser beams having center wavelengths of 473 nm and 445 nm, respectively. The first and second white light is applied, in respective frames, sequentially to a region of interest in a subject. A color image sensor images the region of interest in the each frame. Based on a shift amount, calculated from green signals of first and second frames, between images, an image of a blue signal of the first frame is moved to be aligned with an image of a green signal and an image of a red signal of the second frame. After the alignment, an oxygen saturation image representing an oxygen saturation level of hemoglobin in blood is produced from the blue signal of the first frame and green and red signals of the second frame.
Owner:FUJIFILM CORP

Visual tracking using depth data

Real-time visual tracking using depth sensing camera technology, results in illumination-invariant tracking performance. Depth sensing (time-of-flight) cameras provide real-time depth and color images of the same scene. Depth windows regulate the tracked area by controlling shutter speed. A potential field is derived from the depth image data to provide edge information of the tracked target. A mathematically representable contour can model the tracked target. Based on the depth data, determining a best fit between the contour and the edge of the tracked target provides position information for tracking. Applications using depth sensor based visual tracking include head tracking, hand tracking, body-pose estimation, robotic command determination, and other human-computer interaction systems.
Owner:HONDA MOTOR CO LTD

Advances in extending the aam techniques from grayscale to color images

A face detection and / or detection method includes acquiring a digital color image. An active appearance model (AAM) is applied including an interchannel-decorrelated color space. One or more parameters of the model are matched to the image. Face detection results based on the matching and / or different results incorporating the face detection result are communicated.
Owner:TESSERA TECH IRELAND LTD +1

Skin diagnostic imaging method and apparatus

A method and apparatus is provided for identifying imperfections in a person's facial, forearm or hand skin and for recommending an appropriate remedial cosmetic. The method includes providing an apparatus having a programmable computer, a camera connected to the computer, at least one visible wavelength light source for separately generating at least two different color images and at least one ultraviolet wavelength light source for an ultraviolet light image. Further, the method includes placing the ultraviolet and color images into a program of the computer and processing the images for pinpointing areas of skin requiring preventative treatment including those with skin damage. A remedial set of cosmetic products can thereby be recommended.
Owner:UNILEVER HOME & PERSONAL CARE USA DIV OF CONOPCO IN C

Color invariant image fusion of visible and thermal infrared video

A methodology for forming a composite color image fusion from a set of N gray level images takes advantage of the natural decomposition of color spaces into 2-D chromaticity planes and 1-D intensity. This is applied to the color fusion of thermal infrared and reflective domain (e.g., visible) images whereby chromaticity representation of this fusion is invariant to changes in reflective illumination.
Owner:EQUINOX CORP

Generation of a depth map from a monoscopic color image for rendering stereoscopic still and video images

The invention relates to a method and an apparatus for generating a depth map from a digital monoscopic color image. The method includes the following general steps: a) obtaining a first color component of the MCI, said first color component corresponding to partial color information of the MCI; and, b) assigning depth values to pixels of the MCI based on values of the first color component of respective pixels for forming the depth map for the MCI. In one embodiment, the depth values are generated by adjusting and / or scaling of pixel values of the Cr chroma component of the monoscopic source color image in the Y′CbCr color system.
Owner:HER MAJESTY THE QUEEN & RIGHT OF CANADA REPRESENTED BY THE MIN OF IND THROUGH THE COMM RES CENT

Four-channel color filter array pattern

An image sensor for capturing a color image comprising a two dimensional array of light-sensitive pixels including panchromatic pixels and color pixels having at least two different color responses, the pixels being arranged in a repeating pattern having a square minimal repeating unit having at least three rows and three columns, the color pixels being arranged along one of the diagonals of the minimal repeating unit, and all other pixels being panchromatic pixels.
Owner:OMNIVISION TECH INC

Face detection in color images with complex background

A method (100) of locating human faces, if present, in a cluttered scene captured on a digital image (105) is disclosed. The method (100) relies on a two step process, the first being the detection of segments with a high probability of being human skin in the color image (105), and to then determine a bounday box, or other boundary indication, to border each of those segments. The second step (140) is the analysis of features within each of those boundary boxes to determine which of the segments are likely to be a human face. As human skin is not highly textured, in order to detect segments with a high probability of being human skin, a binary texture map (121) is formed from the image (105), and segments having high texture are discarded.
Owner:CANON KK

System and method for traffic sign recognition

This invention provides a vehicle-borne system and method for traffic sign recognition that provides greater accuracy and efficiency in the location and classification of various types of traffic signs by employing rotation and scale-invariant (RSI)-based geometric pattern-matching on candidate traffic signs acquired by a vehicle-mounted forward-looking camera and applying one or more discrimination processes to the recognized sign candidates from the pattern-matching process to increase or decrease the confidence of the recognition. These discrimination processes include discrimination based upon sign color versus model sign color arrangements, discrimination based upon the pose of the sign candidate versus vehicle location and / or changes in the pose between image frames, and / or discrimination of the sign candidate versus stored models of fascia characteristics. The sign candidates that pass with high confidence are classified based upon the associated model data and the drive / vehicle is informed of their presence. In an illustrative embodiment, a preprocess step converts a color image of the sign candidates into a grayscale image in which the contrast between sign colors is appropriate enhanced to assist the pattern-matching process.
Owner:COGNEX CORP

Method and graphical user interface for modifying depth maps

The invention relates to a method and a graphical user interface for modifying a depth map for a digital monoscopic color image. The method includes interactively selecting a region of the depth map based on color of a target region in the color image, and modifying depth values in the thereby selected region of the depth map using a depth modification rule. The color-based pixel selection rules for the depth map and the depth modification rule selected based on one color image from a video sequence may be saved and applied to automatically modify depths maps of other color images from the same sequence.
Owner:HER MAJESTY THE QUEEN & RIGHT OF CANADA REPRESENTED BY THE MIN OF IND THROUGH THE COMM RES CENT

Method and apparatus for colour imaging a three-dimensional structure

A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Owner:ALIGN TECH

Method and apparatus for printing using a tandem electrostatographic printer

A tandem color electrostatographic printer apparatus has five or more color printing stations or modules for applying respective color separation toner images to a receiver member to form a pentachrome color image in a single pass. A fuser station fuses the pentachrome color image. A clear toner overcoat is then applied to the fused pentachrome toner image and enhanced glossing of the image is provided by a belt glosser to improve color gamut.
Owner:MIDWEST ATHLETICS & SPORTS ALLIANCE LLC

Method for locating faces in digital color images

A digital image processing method for locating faces in a digital color image includes the steps of: generating a mean grid pattern element (MGPe) image from a plurality of sample face images; generating an integral image from the digital color image; and locating faces in the color digital image by using the integral image to perform a correlation between the mean grid pattern element (MGPe) image and the digital color image at a plurality of effective resolutions by reducing the digital color image to grid pattern element images (GPes) at different effective resolutions and correlating the MGPe with the GPes.
Owner:MONUMENT PEAK VENTURES LLC

Fingerprint image input device and living body identification method using fingerprint image

A color image sensor sequentially acquires a plurality of fingerprint images when a finger is pressed against the detector surface. A color information extraction unit detects the finger color in synchronization with the input of the plurality of fingerprint images. An areal information extraction unit detects a physical quantity representing the pressure applied by the finger to the color image sensor when the plurality of fingerprint images are acquired, particularly, the quantity related with the area of the finger in contact with the detector surface. A living body identification unit determines whether the finger is a live or dead one by the analysis of correlation between the physical quantity and the finger color. According to this configuration, even if the finger color does not change much, it is possible to distinguish living bodies from dead ones if there is a sufficient correlation with information such as the area of the fingerprint that reflects the finger pressure. The thickness of the fingerprint input unit is approximately 1-2 mm, determined by the sum of the thickness of the planar light source and that of the color image sensor.
Owner:VISTA PEAK VENTURES LLC

Color translating UV microscope

A color translating UV microscope for research and clinical applications involving imaging of living or dynamic samples in real time and providing several novel techniques for image creation, optical sectioning, dynamic motion tracking and contrast enhancement comprises a light source emitting UV light, and visible and IR light if desired. This light is directed to the condenser via a means of selecting monochromatic, bandpass, shortpass, longpass or notch limited light. The condenser can be a brightfield, darkfield, phase contrast or DIC. The slide is mounted in a stage capable of high speed movements in the X, Y and Z dimensions. The microscope uses broadband, narrowband or monochromat optimized objectives to direct the image of the sample to an image intensifier or UV sensitive video system. When an image intensifier is used it is either followed by a video camera, or in the simple version, by a synchronized set of filters which translate the image to a color image and deliver it to an eyepiece for viewing by the microscopist. Between the objective and the image intensifier there can be a selection of static or dynamic switchable filters. The video camera, if used, produces an image which is digitized by an image capture board in a computer. The image is then reassembled by an overlay process called color translation and the computer uses a combination of feedback from the information in the image and operator control to perform various tasks such as optical sectioning and three dimensional reconstruction, coordination of the monochromater while collecting multiple images sets called image planes, tracking dynamic sample elements in three space, control of the environment of the slide including electric, magnetic, acoustic, temperature, pressure and light levels, color filters and optics, control for microscope mode switching between transmitted, reflected, fluorescent, Raman, scanning, confocal, area limited, autofluorescent, acousto-optical and other modes.
Owner:RICHARDSON TECH

Imaging apparatus, medium, and method using infrared rays with image discrimination

An imaging apparatus, medium, and apparatus using infrared rays with image discrimination. The imaging apparatus may includes an image sensor optically together sensing a visible light component and an infrared component of an image, and an image processor to recognize an object component of the image. Accordingly, an infrared component cell can be far more easily implemented than conventionally. Also, an object component can be more accurately identified while being less affected by ambient illumination of the object component because an infrared component is used. Furthermore, both iris identification and color image acquisition can be achieved using a single camera by employing the image sensor, which senses the infrared component and the visible light component together. Thus, both the iris identification and the color image acquisition can be incorporated and executed by a single camera. Therefore, the imaging apparatus can be made compact.
Owner:SAMSUNG ELECTRONICS CO LTD

Image warping and lateral color correction

Color or grayscale images having optical elements induced geometric distortions can be corrected on individual color image component by creating correction image component having the complementary distortion; and applying the correction image component to the corresponding distorted color image component.
Owner:TEXAS INSTR INC

Processing color and panchromatic pixels

A method for forming a final digital color image includes capturing an image using an image sensor having panchromatic pixels and color pixels corresponding to at least two color photoresponses; providing from the captured image a digital panchromatic image and an intermediate digital color image; and using the digital panchromatic image and the intermediate digital color image to provide the final digital color image.
Owner:OMNIVISION TECH INC

Color image sensor with imaging elements imaging on respective regions of sensor elements

The color image sensor generates an image signal representing a subject. The color image sensor has a light sensor and imaging elements arranged to form images of the subject in light of different colors on respective regions of the light sensor. The light sensor includes sensor elements and is operable to generate the image signal in response to light incident on it.
Owner:MICRON TECH INC

Color adaptive watermarking

The presently claimed invention relates generally to data encoding and steganography. One combination recites a method of encoding data representing color imagery with an auxiliary signal. The method includes: providing a set of encoding values for a data sample; determining a color characteristic associated the data sample based on associated color values; and selectively scaling color values in the data sample based on the color characteristic to encode at least a portion of the auxiliary signal in the data representing color imagery. Of course, other combinations are provided as well.
Owner:DIGIMARC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products