Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

31results about How to "Broad imaging" patented technology

Ultra wide field fundus imaging system

An ultra wide field fundus imaging system comprises a photosource, an optical splitter, a scanning assembly, a curved reflector, a probe pinhole and an imaging assembly. The scanning assembly includes a first scanning mirror scanning along a first direction and a second scanning mirror scanning along a second direction. The light emitted by the photosource passes through the optical splitter, then successively is reflected by the first scanning mirror, the curved reflector, the second scanning mirror and the curved reflector, and then enters in the fundus; the light entering the fundus is reflected by the retina and then successively is reflected by the curved reflector, the second scanning mirror, the curved reflector, the first scanning mirror and then returned to the optical splitter; the light is reflected by the optical splitter and passes through the probe pinhole, finally the light enters in the imaging assembly. Compared with the prior art, the ultra wide field fundus imaging system realizes fundus imaging by total reflection and can effectively avoid ghost images caused by lens module imaging to improve the imaging quality. Since the curvature of the curved reflector is gradually changed, so the light reflected by the curved reflector can enter in the fundus at a larger incident angle to achieve wide field imaging.
Owner:SUZHOU MICROCLEAR MEDICAL INSTR

Variofocusing monitoring shot and monitoring device

A zoom lens assembly for monitor and a monitoring device are provided. The lens assembly comprises a first to a thirteenth lenses (L1-L13) arranged successively coaxially along the transmission direction of an incident light beam. The first, the eighth, the tenth and the twelfth lenses (L1, L8, L10 and L12) are biconvex positive lenses; the second, the ninth and the eleventh lenses (L2, L9 and L11) are falcate negative lenses; the third, the fourth, the sixth and the thirteenth lenses (L3, L4, L6 and L13) are falcate positive lenses; the fifth lens (L5) is a biconcave negative lens; and the seventh lens (L7) is a plano-concave negative lens. The second and the third lenses (L2 and L3) are closely adhered to each other, and the sixth and the seventh lenses (L6 and L7) are closely adhered to each other. The intermediate parts of the second, the third, the fourth and the thirteenth lenses (L2, L3, L4 and L13) are all convex toward a direction reverse to the transmission direction an incident light beam; the intermediate parts of the sixth, the ninth and the eleventh lenses (L6, L9 and L11) are all convex toward the transmission direction of the incident light beam; and the fifth, the sixth and the seventh lenses (L5, L6 and L7) can move synchronously along a light axis direction. The shot can realize all-weather, wide-range and variofocusing monitoring. The shot has a high imaging sharpness and a simple structure; and the cost of the material is low, thus controlling the manufacturing cost effectively.
Owner:HANS LASER TECH IND GRP CO LTD

Variofocusing monitoring shot and monitoring device

A zoom lens assembly for monitor and a monitoring device are provided. The lens assembly comprises a first to a thirteenth lenses (L1-L13) arranged successively coaxially along the transmission direction of an incident light beam. The first, the eighth, the tenth and the twelfth lenses (L1, L8, L10 and L12) are biconvex positive lenses; the second, the ninth and the eleventh lenses (L2, L9 and L11) are falcate negative lenses; the third, the fourth, the sixth and the thirteenth lenses (L3, L4, L6 and L13) are falcate positive lenses; the fifth lens (L5) is a biconcave negative lens; and the seventh lens (L7) is a plano-concave negative lens. The second and the third lenses (L2 and L3) are closely adhered to each other, and the sixth and the seventh lenses (L6 and L7) are closely adhered to each other. The intermediate parts of the second, the third, the fourth and the thirteenth lenses (L2, L3, L4 and L13) are all convex toward a direction reverse to the transmission direction an incident light beam; the intermediate parts of the sixth, the ninth and the eleventh lenses (L6, L9 and L11) are all convex toward the transmission direction of the incident light beam; and the fifth, the sixth and the seventh lenses (L5, L6 and L7) can move synchronously along a light axis direction. The shot can realize all-weather, wide-range and variofocusing monitoring. The shot has a high imaging sharpness and a simple structure; and the cost of the material is low, thus controlling the manufacturing cost effectively.
Owner:HANS LASER TECH IND GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products