Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

158 results about "Intervertebral spaces" patented technology

Intervertebral Implant

An intervertebral spacer for therapeutic treatment of a patient includes at least one link sized and dimensioned to fit within an intervertebral space in the patient, and is configured to maintain a separation of two adjacent vertebrae for a period of time. A rigid guiding object, which may be a tool or a successive link, is insertable into the patient, to guide other links into the patient using an MIS approach. A pivot is connected between successive links, or between a guide tool and a link, configured to limit a relative range of angular orientation between the link and the guiding tool, or successive links. Multiple links are so joined to form a chain pushable by the last link, and pullable by the first link, to form a chain which may be formed into a curved configuration corresponding to the patient's intervertebral space.
Owner:GLOBUS MEDICAL INC

Deployable segmented tlif device

InactiveUS20080221687A1Maintain disc heightSpinal implantsLaparoscopesIntervertebral spaces
A segmented intervertebral body fusion support includes a plurality of segments, the segments including an initial segment, a final segment and at least one intermediate segment. The intermediate segment has a generally trapezoidal configuration and the initial and final segments include tapered side walls providing triangular gaps between adjacent segments. A draw wire is fixed to the first segment and passes through the remaining segments. By pulling the draw wire relative to the segments, the segments are drawn together in a generally arcuate configuration. The draw wire includes an enlargement that passes through the final segment and engages a plurality of fingers on the final segment, which prevents the draw wire from retracting, maintaining the arcuate configuration. The segmented device can be inserted through a laparoscopic device into the intervertebral space and can be subsequently drawn into the arcuate configuration to establish the desired intervertebral spacing.
Owner:ZIMMER SPINE INC

Intervertebral Device Having Expandable Endplates

An intervertebral implant having an endplate that can be slidably expanded following its placement in the intervertebral space.
Owner:DEPUY SYNTHES PROD INC

Radially expandable spinal interbody device and implantation tool

ActiveUS8241358B2Inhibit and prevent overextensionBone implantSpinal implantsIntervertebral spacesBiomedical engineering
A radially expandable spinal interbody device for implantation between adjacent vertebrae of a spine is deliverable to an implant area in a radially collapsed state having minimum radial dimensions and once positioned is then radially expandable through and up to maximum radial dimensions. The expanded radially expandable spinal interbody device is configured to closely mimic the anatomical configuration of a vertebral face. The radially expandable spinal interbody device is formed of arced, pivoting linkages that allow transfiguration from the radially collapsed minimum radial dimensions through and up to the radially expanded maximum radial dimensions once deployed at the implant site (i.e. between adjacent vertebrae). The pivoting linkages have ends with locking features that inhibit or prevent overextension of the linkages. In one form of the locking features, one end of the linkage includes lobes that form a pocket while the other end of the linkage includes a projection that is adapted to be received in the pocket of the lobes of an adjacent linkage. A kit is also provided including a tool for the implantation and deployment of the spinal interbody device into an intervertebral space.
Owner:LIFE SPINE INC

Expandable intervertebral implant

An expandable intervertebral implant (20) is provided for insertion into an intervertebral space defined by adjacent vertebrae. The expandable intervertebral implant includes a pair of outer sleeve portions (30A, 30B) and an inner core (50) disposed between the outer sleeve portions. Movement of the inner core relative to the outer sleeve portions causes the outers sleeve portions to deflect away from each other, thereby engaging the expandable intervertebral implant with the vertebrae and adjusting the height of the intervertebral space.
Owner:DEPUY SYNTHES PROD INC

Segmented insert for intervertebral support

A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
Owner:MAZOR ROBOTICS

Adjustable Distraction Cage With Linked Locking Mechanisms

A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
Owner:HOWMEDICA OSTEONICS CORP

Segmented insert for intervertebral support

ActiveUS20110054538A1Lateral dimension be relatively largeReduce loadInternal osteosythesisJoint implantsIntervertebral spacesEngineering
A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
Owner:MAZOR ROBOTICS

Dynamic Spacer Device and Method for Spanning a Space Formed upon Removal of an Intervertebral Disc

A compliant intervertebral spacer according to the present invention replaces a damage intervertebral disc and functions to maintain disc height and prevent subsidence with a large surface area while substantially reducing patient recovery time. The compliant intervertebral spacer for spanning a space formed by upon removal of an intervertebral disc includes two end plates sized and shaped to fit within an intervertebral space and a compliant connector interconnecting the inner surfaces of the two end plates in a manner which limits motion between the plates to less than a total of 5 degrees of motion in any direction. The intervertebral spacer is configured to permanently maintain the disc space between the two adjacent discs without the use of bridging bone.
Owner:SIMPLIFY MEDICAL PTY LTD

Maximum support TLIF implant

A transforaminal lumbar interbody fusion (TLIF) implant to be placed in an intervertebral space includes a front member and a back member. The front member includes a first end having a hinge, a second end, a pair of lateral portions, a top wall and a bottom wall, an opening configured through the pair of lateral portions and a plurality of openings in each of the top wall and the bottom wall. The back member includes a first end having an arcuately-shaped attachment head comprising a receptor dimensioned and configured to accommodate the hinge of the front member, a second end, a pair of lateral portions, a top wall, a bottom wall and an opening configured through the pair of lateral portions. The top wall and the bottom wall of the back member further comprise a plurality of openings.
Owner:CUSTOM SPINE INC

Intevertebral Implant

An intervertebral spacer for therapeutic treatment of a patient includes at least one link sized and dimensioned to fit within an intervertebral space in the patient, and is configured to maintain a separation of two adjacent vertebrae for a period of time. A rigid guiding object, which may be a tool or a successive link, is insertable into the patient, to guide other links into the patient using an MIS approach. A pivot is connected between successive links, or between a guide tool and a link, configured to limit a relative range of angular orientation between the link and the guiding tool, or successive links. Multiple links are so joined to form a chain pushable by the last link, and pullable by the first link, to form a chain which may be formed into a curved configuration corresponding to the patient's intervertebral space.
Owner:GLOBUS MEDICAL INC

Spinal implant distractor/inserter

A method for distracting a pair of adjacent vertebrae and inserting an implant within the intervertebral space between the adjacent vertebrae using a posterior angle is described. The method employs a vertebral distractor-inserter comprising a housing, a pair of opposing arms in mechanical communication with the housing, a driving rod extending through at least a portion of the housing and between the arms, wherein the driving rod comprises an axis and a surface with a plurality of angled ratchet teeth on at least a portion of the surface, and a ratchet drive mechanism in mechanical communication with the driving rod.
Owner:SPINAL ELEMENTS INC

Intervertebral plate system

Devices and methods are provided for assisting in spinal stabilization. An improved intervertebral plate system is provided that includes an intervertebral spacer, a curvilinear plate, a plurality of bone screws, a curvilinear cover element and a cover screw. The curvilinear plate is configured and arranged to at least inhibit the intervertebral spacer from backing out when positioned between the two vertebrae of a patient. The plate can be secured to one or more intervertebral bodies via a plurality of bone screws. The curvilinear cover element, which can have a smooth and uniform surface, can be attached to the plate. The cover element is configured to inhibit the plurality of bone screws from inadvertently backing out of the plate. The plate and / or the cover element can be substantially recessed within the intervertebral space, thereby reducing the risk of damage to tissue.
Owner:SPINAL USA

Intervertebral disc space sizing tools and methods

A method and apparatus for making a size measurement within an intervertebral space by placing an expandable and contractible device into the intervertebral space, expanding the device, measuring a size characteristic of the space, contracting the device and then removing it. The measurement may be accomplished by an external x-ray or other imaging device imaging the expanded device in situ or by mechanically operated devices. An expansion and contraction mechanism such as fluid containing bladder or mechanically shifted members expands the device which later contracts in a controlled manner to the contracted size. An apparatus and method is provided for the measuring of the intervertebral space at a controlled distraction force. The apparatus includes an expandable device for providing a measurement within the intervertebral space and facilitating the measurement of the angulations of the lordotic curve of the intervertebral space.
Owner:PIONEER SURGICAL TECH INC

Retractor for use during retroperitoneal lateral insertion of spinal implants

A method is disclosed for introducing a spinal disc implant into an intervertebral space of a subject. The subject is placed in a lateral position, and the anterior face of the spinal disc intervertebral space is accessed, between the L5 and S1 vertebrae, from an anterior and lateral retroperitoneal approach. An operative corridor to the anterior face of the spinal disc space is established by introducing a retractor instrument anterolaterally to the spinal disc space between the anterior superior iliac spine and the anterior inferior iliac spine. The damaged spinal disc contents are removed from the intervertebral space through the operative corridor, and the implant is advanced into the intervertebral space at an oblique angle and pivoted to position the implant substantially laterally within the intervertebral space. Elongated retractor and insertion instruments, as well as a modified disc implant, are also disclosed for carrying out the method.
Owner:SPANN SCOTT

Minimally-invasive retroperitoneal lateral approach for spinal surgery

A method is disclosed for introducing a spinal disc implant into an intervertebral space of a subject. The subject is placed in a lateral position, and the anterior face of the spinal disc intervertebral space is accessed, between the L5 and S1 vertebrae, from an anterior and lateral retroperitoneal approach. An operative corridor to the anterior face of the spinal disc space is established by introducing a retractor instrument anterolaterally to the spinal disc space between the anterior superior iliac spine and the anterior inferior iliac spine. The damaged spinal disc contents are removed from the intervertebral space through the operative corridor, and the implant is advanced into the intervertebral space at an oblique angle and pivoted to position the implant substantially laterally within the intervertebral space. Elongated retractor and insertion instruments, as well as a modified disc implant, are also disclosed for carrying out the method.
Owner:PANTHEON SPINAL

Method of preparing a poorly crystalline calcium phosphate and methods of its use

The present invention provides a novel process for producing a calcium phosphate cement or filler which hardens in a temperature dependent fashion in association with an endothermic reaction. In the reaction a limited amount of water is mixed with dry calcium phosphate precursors to produce a hydrated precursor paste. Hardening of the paste occurs rapidly at body temperature and is accompanied by the conversion of one or more of the reactants to poorly crystalline apatitic calcium phosphate. The hardened cements, fillers, growth matrices, orthopedic and delivery devices of the invention are rapidly resorbable and stimulate hard tissue growth and healing. A composite material is provided including a strongly bioresorbable, poorly crystalline apatitic calcium phosphate composite and a supplementary material. The supplementary material is in intimate contact with the hydroxyapatite material in an amount effective to impart a selected characteristic to the composite. The supplemental material may be biocompatible, bioresorbable or non-resorbable. A method for treating a bone defect also is provided by identifying a bone site suitable for receiving an implant, and introducing a strongly resorbable, poorly crystalline apatitic calcium phosphate at the implant site, whereby bone is formed at the implant site. The implant site may be a variety of sites, such as a tooth socket, non-union bone, bone prosthesis, an osteoporotic bone, an intervertebral space, an alveolar ridge or a bone fracture.
Owner:LIFE SCI ENTERPRISES

Anterior intervertebral spacer and integrated plate assembly and methods of use

A precisely size matched intervertebral plate and spacer assembly for ensuring a tight fit within a disc space to promote spinal fusion, comprising: a “U-shaped” spacer configured to fit within the intervertebral space; and, a matching countersunk low profile “H-shaped” anterior plate joined perpendicularly to the spacer. The plate further comprises: a plurality of anchor members configured to attach to the junctions of the anterior cortex faces and the endplates; and, channels individually traversing through the anchor members for inserting screws into the vertebral bodies' cortical bone. The spacer comprises a hollow three-sided U-shaped member, comprising two opposing parallel side walls, and a perpendicular posterior wall, while lacking a superior, inferior, and anterior wall. The exterior walls of the plate and spacer are planar, while the interior walls of the spacer are curved to house a precisely fitting cylindrical graft, or other insert such as DBM, bone dust, bone paste, bone dowel with direct contact to the endplates to promote fusion.
Owner:NEHLS DANIEL

Vertebral osteosynthetis equipment

A vertebral osteosynthesis equipemnt including an intervertebral implant (1); a member (2) for connecting vertebral bodies (100) of both treated vertebrae intended to be assembled to the intervertebral implant (1); and a member (3) for assembling the connecting member (2) to the intervertebral implant (1). The intervertebral implant (1) includes on its proximal side relatively to the direction of its introduction into the intervertebral space (102), a hole comprising two coaxial portions, i.e. a proximal portion of larger section and a distal portion of smaller section, these proximal and distal portions comprising respective connecting means. The connecting member (2) includes a hole which allows it to be engaged onto a guiding rod (50) intended to be inserted into said distal portion (13) of the hole of the implant (1), and the assembling member (3) comprises a conduit on this guiding rod (50).
Owner:MEDICREA INT SA

Method of retroperitoneal lateral insertion of spinal implants

A method is disclosed for introducing a spinal disc implant into an intervertebral space of a subject. The subject is placed in a lateral position, and the anterior face of the spinal disc intervertebral space is accessed, between the L5 and S1 vertebrae, from an anterior and lateral retroperitoneal approach. An operative corridor to the anterior face of the spinal disc space is established by introducing a retractor instrument anterolaterally to the spinal disc space between the anterior superior iliac spine and the anterior inferior iliac spine. The damaged spinal disc contents are removed from the intervertebral space through the operative corridor, and the implant is advanced into the intervertebral space at an oblique angle and pivoted to position the implant substantially laterally within the intervertebral space. Elongated retractor and insertion instruments, as well as a modified disc implant, are also disclosed for carrying out the method.
Owner:PANTHEON SPINAL

Device for Stabilizing a Vertebral Joint and Method for Anterior Insertion Thereof

A prosthetic device can be used as a prosthesis following a discectomy or a corpectomy. The prosthetic device includes two endplates with staggered motion limiting members. The device can be configured to allow six degrees of motion when comparing one endplate relative to the other. The endplates can be configured to fix the joint by changing the body held within the device and by adding a locking plate and fasteners. A method teaches how to insert a device to an intervertebral space via an anterior incision.
Owner:GLOBUS MEDICAL INC

Expandable intervertebral implants

Interbody spacers are expandable horizontally and vertically by an application of axial force, and lockable in an expanded configuration. The spacers include support members interconnected to end bodies by pivotable link members. The spacers are introduced between vertebral bodies in a compressed configuration and expanded to fill the intervertebral space and provide support and selective lordotic correction. Graft material may be introduced into the expanded spacer. Provisional and / or supplementary locking means lock the spacers in the expanded configuration. Embodiments of the spacers include symmetrically and asymmetrically configured spacers. Methods of expansion include symmetric expansion or asymmetric expansion along each of two directions.
Owner:AMPLIFY SURGICAL INC

Reinforced carbon fiber/carbon foam intervertebral spine fusion device

An intervertebral implant for placement in the intervertebral space between two adjacent vertebral bodies is provided. The implant comprises a hollow cage and a porous core received within the cage. The cage comprises a superior surface configured to contact a first vertebral body, an inferior surface configured to contact a second vertebral body, and an outer wall extending between the superior surface and inferior surface. The outer wall comprises an exterior surface defining the outer perimeter of the implant, and an interior surface defining an inner (hollow) space or void. The porous core is received within the inner space or void, and preferably fills the void. The core comprises a carbonaceous matrix comprising a continuous phase having a surface and defining a plurality of open spaces throughout said matrix. Suitable carbonaceous matrices are selected from the group consisting of carbon foam, graphite foam, and combinations thereof. Methods of making and using the same, along with kits to facilitate such use are also provided.
Owner:WICHITA STATE UNIVERSITY

Laterally expandable intervertebral fusion implant

The invention relates to an intervertebral fusion implant for fusing two adjacent vertebrae, comprising an adjustable support body, the base surface and cover surface of which are configured to bear on end plates of the adjacent vertebrae, wherein provision is made for a side bracket, which can be pivoted laterally about a hinge and the base and cover of which have a planar design, and provision is made for an actuator for pivoting out the side bracket into a position (working position) spread from the support body. As a result, the implant has particularly small dimensions and can, after assembly at the envisaged implantation site, be actuated in such a way that it becomes larger and thereby affords a larger support surface for support in the intervertebral space. Thus, even comparatively large-area defects can be treated by minimally invasive surgery.
Owner:FACET LINK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products