Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1758results about "Cycle actuators" patented technology

Electronic shifting systems and methods

The invention provides a wireless control system for a bicycle, including at least one shift actuator generating an input signal when actuated and a master control unit transmitting a shift signal responsive to the input signal. At least one electromechanical gear changer is provided and includes a gear changer control unit. The gear changer control unit receives the shift signal from the master control unit and controls the at least one electromechanical gear changer corresponding to the received shift signal. The gear changer control unit listens for the shift signal during a part of an awake mode cycle time, the master control unit transmitting the shift signal for a message duration time which is greater than the awake mode cycle time.
Owner:SRAM CORPORATION

Automatic shifting control device for a bicycle

A bicycle features an automatically shifting transmission. The shifting is controlled by a controller. The controller has a number of ranges that comprise a subset of the available gear steps. The operator of the bicycle can select an appropriate range and the controller shifts gears within the range depending upon a preset map of bicycle speeds and gear steps. The operator can select other ranges as desired by upshifting or downshifting. The controller also has at least one cruising mode that decreases the likelihood of inadvertent shifting during operation of the bicycle at speeds within a preset range of speeds. In addition, the controller has an elapse mode that further reduces the number of available gear steps in a range during resumed operation after slowing below a preset speed or stopping.
Owner:SHIMANO INC

Bicycle distributed computing arrangement and method of operation

A bicycle is disclosed having a control system with a user interface and an active suspension system. The control system includes a one or more sensors arranged to measure and transmit a signal indicative of the terrain over which the bicycle is being ridden. The active suspension system includes a valve box that is fluidly coupled to each chamber of the lower cylinder. An orifice in the valve box is changed in size in response to a signal from a sensor associated with the front wheel that changes the response of the suspension system due to changing terrain conditions. The user interface includes a selection device mounted to the handlebars that allows the user to change parameters of the active suspension system during operation of the bicycle.
Owner:CANNONDALE BICYCLE CORPORATION

Electric bicycle derailleur

An electric derailleur has a motor unit having a derailleur motor with an output shaft, a position control mechanism and a controller. The output shaft is rotated through a moveable range including a first derailleur shift position and a second derailleur shift position. The position control mechanism is configured and arranged to provide a position signal indicative of an angular position of the output shaft. The controller detects a predetermined lockup position of the derailleur motor occurring at one of the first and second derailleur shift positions. The controller also sets a predetermined stop position for the derailleur motor that is calculated distance prior to the lockup position based on the position signal of the position control mechanism. Thus, the derailleur motor can be calibrated such that a new stop position is set that prevents an overcurrent from occurring in the motor.
Owner:SHIMANO INC

Bicycle control device

A bicycle control device is provided with a brake bracket, a brake lever, a first gearshift operating part, a second gearshift operating part, a first electrical switch, and a second electrical switch. The brake bracket is mountable to a handlebar. The brake lever is pivotally mounted to the brake bracket. The first gearshift operating part is movable relative to the brake lever. The second gearshift operating part is separate from the first gearshift operating part and movable relative to the brake lever. The first electrical switch is operated with the first gearshift operating part. The second electrical switch is operated with the second gearshift operating part. The second gearshift operating part is arranged such that when the first gearshift operating part is moved relative to the brake lever, the second gearshift operating part moves relative to the brake lever along with the first gearshift operating part.
Owner:SHIMANO INC

Apparatus for controlling multiple bicycle operating characteristics

A bicycle operating characteristic control apparatus includes a first bicycle component and a second bicycle component, wherein the second bicycle component is changeable from a first status to a second status. The first bicycle component includes a base member for coupling to a bicycle frame, a movable member coupled for movement relative to the base member, and a chain guide coupled to the movable member for guiding a chain among a plurality of sprockets in response to movement of the movable member. A biasing device provides a biasing force to the chain guide for tensioning the chain, and a rotation resistance changing device changes a rotational resistance of the chain guide relative to the movable member. The first bicycle component and the second bicycle component are operatively coupled so that rotational resistance of the chain guide changes in conjunction with a change of status of the second bicycle component.
Owner:SHIMANO INC

Wireless communication apparatus

A wireless communication apparatus including a master unit and a slave unit. The master unit includes a transmitter configured to transmit a beacon periodically and a receiver. A detector is provided that is configured to output a detected signal, and the slave unit is configured to receive the detected signal from the detector. The slave unit includes a receiver configured to receive the beacon periodically at a receiving timing determined based on the beacon, and a transmitter configured to transmit the detected signal to the master unit receiver at a transmitting timing determined based on the beacon if a value of the detected signal changes by a threshold amount.
Owner:SHIMANO INC

Wireless bicycle communication device

A wireless bicycle communication device includes a bracket, an electronic switch, an antenna, a wiring assembly and a radio communication unit. The electronic switch is coupled to the bracket and configured to generate switching signals. The antenna is supported to an antenna receiving portion of the bracket. The wiring assembly electrically connects the antenna and a first connector. The radio communication unit is disposed within a radio unit receiving portion of the bracket and has a second connector configured to detachably mate with the first connector. The radio communication unit is configured to process switching signals from the electronic switch and broadcast corresponding radio signals via the antenna.
Owner:SHIMANO INC

Bicycle control device

A bicycle control device is provided with a brake bracket, a brake lever, a first gearshift operating part, a second gearshift operating part, a first electrical switch, and a second electrical switch. The brake bracket is mountable to a handlebar. The brake lever is pivotally mounted to the brake bracket. The first gearshift operating part is movable relative to the brake lever. The second gearshift operating part is separate from the first gearshift operating part and movable relative to the brake lever. The first electrical switch is operated with the first gearshift operating part. The second electrical switch is operated with the second gearshift operating part. The second gearshift operating part is arranged such that when the first gearshift operating part is moved relative to the brake lever, the second gearshift operating part moves relative to the brake lever along with the first gearshift operating part.
Owner:SHIMANO INC

Drive system operated by muscle-power

An electric drive system (1) operated by muscle power for a vehicle (2) includes a foot pedal (5) and a mechanical generator (6) mechanically connected to the foot pedal. The drive system also includes an electric transmission (4) and an electric control system (20) with a control program (21) of the generator, which is able to generate a counter or load moment (GM). The drive system also includes a starting control system (22) for the generator, by means of which a standstill pedal resistance (TW) and a high starting moment (MA) is produced at the foot pedal. When used in a stationary training apparatus (3), the drive system includes a motor operation control system (23) with a bi-directional converter (31), by means of which the generator is also able to be operated as a motor.
Owner:SWISSMOVE

Motor having an integrated torque sensor

A motor unit comprises a housing for containing a motor, a motor shaft for receiving a motor provided driving force, a torque sensor mechanism for detecting torque, and a controller for controlling power to the motor in response to a detected amount of torque. An actuator couples the torque sensor to a sensor of the controller. The actuator is configured to move relative to the controller sensor thereby causing the sensor to produce a signal indicative of the detected level of torque. The controller is contained within the housing of the motor. The motor unit may also have an auxiliary shaft for receiving an externally provided driving force with a first torque transmission path for transferring the externally provided driving force to a drive mechanism and a second torque transmission path for transferring the motor provided driving force to said drive mechanism. A first one way drive means is provided in the first torque transmission path between the auxiliary shaft and the drive mechanism such that when the drive mechanism is being driven by the motor provided driving force through the second torque transmission path, the auxiliary shaft is able to freewheel. The motor unit can drive any apparatus, but may be used in a pedal driven apparatus such as a bicycle where an externally provided driving force is provided by manually operable pedals of said apparatus which are fixed for rotation with the auxiliary shaft. In this case, the auxiliary shaft comprises a pedal spindle of the bicycle and the drive mechanism comprises a sprocket or belt drive.
Owner:FOSTER ASSETS CORPORATION

Motorized bicycle derailleur assembly

A motorized bicycle derailleur assembly has a motor unit, a movable part (e.g., a motor linkage, a derailleur linkage and / or a chain guide) and a controller. The movable part is in response to activation of the motor unit within a mechanical stroke. The motor unit has a motor output stroke with a prescribed maximum movement range that is larger than the mechanical stroke of the movable part. The movable part has an anti-jamming arrangement having an anti-jamming spring. The anti-jamming spring is configured and arranged to compress when the motor unit continues to apply a moving force to the movable part after the movable part reaches a lockup position. The controller is configured to set the motor unit output stroke to an operating movement range that is smaller than the prescribed maximum movement range so that the anti-jamming biasing element remains uncompressed during normal shifting operation.
Owner:SHIMANO INC

Hydraulically-operated bicycle shifting system with positive pressure actuation

A family of new bicycle shifting systems incorporate improved derailleur designs that are controlled by sealed hydraulic actuators. The shifting systems (i) a hydraulically-actuated, manually-powered front and rear derailleur shifting system, (ii) a hydraulically-actuated, power-assisted front and rear derailleur shifting system with manual control, and (iii) a hydraulically-actuated, power-assisted front and rear derailleur shifting system in which the shifting sequence for the rear derailleur is controlled automatically by pedal speed. Each of these shifting systems utilize a totally sealed, inclined linear shifting path. Environmental contaminants are prevented from entering any of the critical derailleur or control elements. The linear, inclined shifting path provides precise chain shifting, more uniform chain wrap on the rear bicycle drive sprockets, and lower chain and sprocket wear. Several different shifting control units are disclosed.
Owner:PATTERSON RICHARD A

Electro mechanical bicycle derailleur actuator system and method

An electro mechanical bicycle derailleur actuator system, retrofittable to a bicycle having gearing and at least one derailleur, the derailleur having a cable, the system comprising: at least one derailleur actuator module (DAM) connectable to the bicycle and to the cable; a cyclist interface module (CIM) connectable to the bicycle for cyclist interface with the system; and a control and power module (CPM) connectable to the bicycle serving to control and power the system, wherein the bicycle gearing is shiftable by the system without derailleur cable modification.
Owner:MENACHEM HAIM +1

Apparatus for adjusting a position of a bicycle derailleur

A bicycle transmission control apparatus comprises a control unit that provides a first signal to operate a first derailleur a gear shift distance from a first origin sprocket to a first destination sprocket. The control unit receives a condition signal that indicates a condition resulting from at least one of the first derailleur and a second derailleur; and an adjustment controller moves the first derailleur an adjustment distance less than the gear shift distance in response to the condition signal.
Owner:SHIMANO INC

Bicycle shifter

A bicycle shifter for pulling and releasing a control cable connected to a gear change mechanism that includes a housing mountable to a handlebar, a takeup member, a control member, a holding mechanism and a release mechanism. The takeup member is movable for pulling the control cable in a cable-pull direction and releasing the control cable in a cable-release direction. The control member is movable in a shift direction from a rest position for a first shift movement to permit motion of the takeup member in the cable-release direction. The first shift movement corresponds to a single gear change. The control member is movable in the shift direction from the rest position for a second shift movement to move the takeup member in the cable-pull direction. The second shift movement corresponds to a plurality of gear changes. The second shift movement is greater than the first shift movement. The control member is biased toward the rest position. The holding mechanism retains the takeup element in a selected gear position. The drive mechanism is operable for releasing the holding mechanism from the takeup member and for moving the takeup member in response to actuation of the control member.
Owner:SRAM CORPORATION

Switch designation apparatus for a bicycle control unit

A switch designation apparatus for a bicycle control unit comprises a first switch structured to be mounted to a bicycle for providing signals to move a moving bicycle control device, a second switch structured to be mounted to the bicycle for providing signals to move the moving bicycle control device, and a switch designation unit that allows a user to selectively designate movements of the bicycle control device signaled by at least one of the first switch and the second switch.
Owner:SHIMANO INC

Bicycle electrical generator hub

A bicycle gearshift system is mounted on the rear part of the frame of the bicycle. The bicycle gearshift system includes an electrically powered rear derailleur, a rear hub, a charger part, and a gearshift control part. The electrically powered rear derailleur is mounted on the rear part of the frame. The rear hub is also mounted to the rear part of the frame. The rear hub has an electrical generator mechanism that generates electricity through the rotation of the wheel. The charger part is mounted on the rear hub and stores the electrical energy that was generated by the generator part. The gearshift control part is equipped on the electrically powered rear derailleur, where gearshift control of the electrically powered rear derailleur is performed through the energy that is stored in the charger part.
Owner:SHIMANO INC

Electric bicycle derailleur

An electric derailleur has a motor unit having a derailleur motor with an output shaft, a position control mechanism and a controller. The output shaft is rotated through a moveable range including a first derailleur shift position and a second derailleur shift position. The position control mechanism is configured and arranged to provide a position signal indicative of an angular position of the output shaft. The controller detects a predetermined lockup position of the derailleur motor occurring at one of the first and second derailleur shift positions. The controller also sets a predetermined stop position for the derailleur motor that is calculated distance prior to the lockup position based on the position signal of the position control mechanism. Thus, the derailleur motor can be calibrated such that a new stop position is set that prevents an overcurrent from occurring in the motor.
Owner:SHIMANO INC

Wireless bicycle communication device

The present invention provides a wireless bicycle communication device, which includes a bracket, an electronic switch, an antenna, a wiring assembly and a radio communication unit. The electronic switch is coupled to the bracket and configured to generate switching signals. The antenna is supported to an antenna receiving portion of the bracket. The wiring assembly electrically connects the antenna and a first connector. The radio communication unit is disposed within a radio unit receiving portion of the bracket and has a second connector configured to detachably mate with the first connector. The radio communication unit is configured to process switching signals from the electronic switch and broadcast corresponding radio signals via the antenna.
Owner:SHIMANO INC

Battery mounting arrangement for electrically powered vehicle

An electrically-powered scooter including a front wheel, a rear wheel and a frame assembly. A handlebar assembly and a seat assembly are supported by the frame assembly. The frame assembly includes a left frame rail and a right frame rail spaced laterally from one another and extending between the handle bar assembly and the seat assembly. A battery support extends between the left and the right frame rails at a position intermediate the handle bar assembly and the seat assembly. A battery is supported by the battery support. In one arrangement, the battery support includes an enclosure defining a battery storage chamber. The enclosure includes a guide member configured to engage a guide recess of the battery to guide the battery into the battery storage chamber. In another arrangement, the battery may include a recharging port, an axis of which defines an oblique angle with an axis of the battery.
Owner:YAMAHA MOTOR CO LTD

Bicycle control system having a value generating unit

A bicycle control system includes at least one user input member, a value generating unit, a wireless transmitter and a wireless receiver. The value generating unit includes a memory component that at least temporarily stores a generated value. The value generating unit updates the generated value that was memorized in accordance with the at least one user input member was operated. The wireless transmitter periodically transmits control signals that are indicative of the generated value. The wireless receiver receives the control signals from the wireless transmitter.
Owner:SHIMANO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products