Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

121 results about "Inverted Terminal Repeat" patented technology

Inverted terminal repeats. [in¦vərd·əd ¦tər·mə·nəl ri′pēts] (cell and molecular biology) Related or identical sequences of deoxyribonucleic acid in inverted form occurring at opposite ends of some transposons.

Viral vectors and methods for producing and using the same

InactiveUS20050220766A1Improve AAV production titerReduce and even essentially eliminate contaminationBiocidePeptide/protein ingredientsPolymerase LNucleic acid sequencing
A recombinant hybrid virus, including: (a) a deleted adenovirus vector genome comprising the adenovirus 5′ and 3′ cis-elements for viral replication and encapsidation, and further comprising a deletion in an adenovirus genomic region selected from the group consisting of: (i) the polymerase region, wherein said deletion essentially prevents the expression of a functional polymerase protein from said deleted region and said hybrid virus does not otherwise express a functional polymerase protein, (ii) the preterminal protein region, wherein said deletion essentially prevents the expression of a functional preterminal protein from said deleted region, and said hybrid virus does not otherwise express a functional preterminal protein, and (iii) both the regions of (i) and (ii); and (b) a recombinant adeno-associated virus (AAV) vector genome flanked by the adenovirus vector genome sequences of (a), said recombinant AAV vector genome comprising (i) AAV 5′ and 3′ inverted terminal repeats, (ii) an AAV packaging sequence, and (iii) a heterologous nucleic acid sequence, wherein said heterologous nucleic acid sequence is flanked by the 5′ and the 3′ AAV inverted terminal repeats of (i). Methods of making and using the recombinant hybrid virus are also disclosed.
Owner:DUKE UNIV

Dual-AAV Vector-Based Systems and Methods for Delivering Oversized Genes to Mammalian Cells

Disclosed are materials and methods for treating diseases of the mammalian eye, and in particular, Usher syndrome 1B (USH1B). The invention provides AAV-based, dual-vector systems that facilitate the expression of full-length proteins whose coding sequences exceed that of the polynucleotide packaging capacity of an individual AAV vector. In one embodiment, vector systems are provided that include i) a first AAV vector polynucleotide that includes an inverted terminal repeat at each end of the polynucleotide and a suitable promoter followed by a partial coding sequence that encodes an N-terminal portion of a full-length polypeptide; and ii) a second AAV vector polynucleotide that includes an inverted terminal repeat at each end of the polynucleotide and a partial coding sequence that encodes a C-terminal portion of a full-length polypeptide, optionally followed by a polyadenylation (pA) signal sequence. In another embodiment, the vector system includes i) a first AAV vector polynucleotide comprising an inverted terminal repeat at each end, a suitable promoter followed by a partial coding sequence that encodes an N-terminal portion of a full-length polypeptide followed by a splice donor site and intron and ii) a second AAV vector polynucleotide comprising an inverted terminal repeat at each end, followed by an intron and a splice-acceptor site for the intron, followed by a partial coding sequence that encodes a C-terminal portion of a full-length polypeptide, optionally followed by a polyadenylation (pA) signal sequence. The coding sequence or the intron sequence in the first and second AAV vectors preferably includes a sequence region that overlaps.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Killing cell for high-efficiency and stable expression of antibodies and use thereof

The invention relates to a killing cell for high-efficiency and stable expression of antibodies and a use thereof. Specifically, the invention provides the transgenic killing cell; a genome of the killing cell is stably integrated with an expression cassette containing an encoding sequence of human Fc segment-containing antibodies, or containing an encoding sequence of chimeric antigen receptors and inhibitory antibodies or activated type antibodies, and both ends of the expression cassette contain inverted terminal repeated sequences of a transposon. The killing cell can stably express the human Fc segment-containing antibodies or the chimeric antigen receptors and antigen-binding fragments derived from interested antibodies with high level while maintaining cell killing toxic effect. In addition, for preventing systemic toxicity and autoimmune diseases caused by over expression of antibodies due to in-vivo continuous proliferation of immune cells for stable expression of the antibodies, a molecular braking system is also introduced. With use of monoclonal antibody agents appearing on the market, the killing cell integrated with the antibody expression cassette can be quickly eliminated, and the safety of treatment is effectively improved.
Owner:SHANGHAI CELL THERAPY RES INST +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products