Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

160 results about "Physics processing unit" patented technology

A physics processing unit (PPU) is a dedicated microprocessor designed to handle the calculations of physics, especially in the physics engine of video games. It is an example of hardware acceleration.

System and method for managing virtual servers

A management capability is provided for a virtual computing platform. In one example, this platform allows interconnected physical resources such as processors, memory, network interfaces and storage interfaces to be abstracted and mapped to virtual resources (e.g., virtual mainframes, virtual partitions). Virtual resources contained in a virtual partition can be assembled into virtual servers that execute a guest operating system (e.g., Linux). In one example, the abstraction is unique in that any resource is available to any virtual server regardless of the physical boundaries that separate the resources. For example, any number of physical processors or any amount of physical memory can be used by a virtual server even if these resources span different nodes. A virtual computing platform is provided that allows for the creation, deletion, modification, control (e.g., start, stop, suspend, resume) and status (i.e., events) of the virtual servers which execute on the virtual computing platform and the management capability provides controls for these functions. In a particular example, such a platform allows the number and type of virtual resources consumed by a virtual server to be scaled up or down when the virtual server is running. For instance, an administrator may scale a virtual server manually or may define one or more policies that automatically scale a virtual server. Further, using the management API, a virtual server can monitor itself and can scale itself up or down depending on its need for processing, memory and I / O resources. For example, a virtual server may monitor its CPU utilization and invoke controls through the management API to allocate a new processor for itself when its utilization exceeds a specific threshold. Conversely, a virtual server may scale down its processor count when its utilization falls. Policies can be used to execute one or more management controls. More specifically, a management capability is provided that allows policies to be defined using management object's properties, events and / or method results. A management policy may also incorporate external data (e.g., an external event) in its definition. A policy may be triggered, causing the management server or other computing entity to execute an action. An action may utilize one or more management controls. In addition, an action may access external capabilities such as sending notification e-mail or sending a text message to a telephone paging system. Further, management capability controls may be executed using a discrete transaction referred to as a “job.” A series of management controls may be assembled into a job using one or management interfaces. Errors that occur when a job is executed may cause the job to be rolled back, allowing affected virtual servers to return to their original state.
Owner:ORACLE INT CORP

System and method for detecting access to shared structures and for maintaining coherence of derived structures in virtualized multiprocessor systems

A computer system includes at least one virtual machine that has a plurality of virtual processors all running on an underlying hardware platform. A software interface layer such as a virtual machine monitor establishes traces on primary structures located in a common memory space as needed for the different virtual processors. Whenever any one of the virtual processors generates a trace event, such as accessing a traced structure, then a notification is sent to at least the other virtual processors that have a trace on the accessed primary structure. In some applications, the VMM derives and maintains secondary structures corresponding to the primary structures, such as where the VMM converts, through binary translation, original code intended to run on a virtual processor into code that can be run on an underlying physical processor of the hardware platform. In these applications, the VMM may rederive or invalidate the secondary structures as needed upon receipt of the notification of the trace event. Different semantics are provided for the notification, providing different choices of performance versus guaranteed consistency between primary and secondary structures. In the preferred embodiment of the invention, a dedicated sub-system is included within the VMM for each virtual processor; each sub-system establishes traces, senses trace events, issues the notification, and performs other operations relating specifically to its respective virtual processor.
Owner:VMWARE INC

Multiprocessor computer system having multiple coherency regions and software process migration between coherency regions without cache purges

A multiprocessor computer system has a plurality of processing nodes which use processor state information to determine which coherent caches in the system are required to examine a coherency transaction produced by a single originating processor's storage request. A node of the computer has dynamic coherency boundaries such that the hardware uses only a subset of the total processors in a large system for a single workload at any specific point in time and can optimize the cache coherency as the supervisor software or firmware expands and contracts the number of processors which are being used to run any single workload. Multiple instances of a node can be connected with a second level controller to create a large multiprocessor system. The node controller uses the mode bits to determine which processors must receive any given transaction that is received by the node controller. The second level controller uses the mode bits to determine which nodes must receive any given transaction that is received by the second level controller. Logical partitions are mapped to allowable physical processors. Cache coherence regions which encompass subsets of the total number of processors and caches in the system are chosen for their physical proximity. A distinct cache coherency region can be defined for each partition using a hypervisor.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products