Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

371 results about "Cache coherence" patented technology

In computer architecture, cache coherence is the uniformity of shared resource data that ends up stored in multiple local caches. When clients in a system maintain caches of a common memory resource, problems may arise with incoherent data, which is particularly the case with CPUs in a multiprocessing system.

Method and cache-coherence system allowing purging of mid-level cache entries without purging lower-level cache entries

A method and apparatus for purging data from a middle cache level without purging the corresponding data from a lower cache level (i.e., a cache level closer to the processor using the data), and replacing the purged first data with other data of a different memory address than the purged first data, while leaving the data of the first cache line in the lower cache level. In some embodiments, in order to allow such mid-level purging, the first cache line must be in the "shared state" that allows reading of the data, but does not permit modifications to the data (i.e., modifications that would have to be written back to memory). If it is desired to modify the data, a directory facility will issue a purge to all caches of the shared-state data for that cache line, and then the processor that wants to modify the data will request an exclusive-state copy to be fetched to its lower-level cache and to all intervening levels of cache. Later, when the data in the lower cache level is modified, the modified data can be moved back to the original memory from the caches. In some embodiments, a purge of all shared-state copies of the first cache-line data from any and all caches having copies thereof is performed as a prerequisite to doing this exclusive-state fetch.
Owner:RPX CORP +1

High-speed memory storage unit for a multiprocessor system having integrated directory and data storage subsystems

A high-speed memory system is disclosed for use in supporting a directory-based cache coherency protocol. The memory system includes at least one data system for storing data, and a corresponding directory system for storing the corresponding cache coherency information. Each data storage operation involves a block transfer operation performed to multiple sequential addresses within the data system. Each data storage operation occurs in conjunction with an associated read-modify-write operation performed on cache coherency information stored within the corresponding directory system. Multiple ones of the data storage operations may be occurring within one or more of the data systems in parallel. Likewise, multiple ones of the read-modify-write operations may be performed to one or more of the directory systems in parallel. The transfer of address, control, and data signals for these concurrently performed operations occurs in an interleaved manner. The use of block transfer operations in combination with the interleaved transfer of signals to memory systems prevents the overhead associated with the read-modify-write operations from substantially impacting system performance. This is true even when data and directory systems are implemented using the same memory technology.
Owner:UNISYS CORP

Scalable cache coherent distributed shared memory processing system

A packetized I/O link such as the HyperTransport protocol is adapted to transport memory coherency transactions over the link to support cache coherency in distributed shared memory systems. The I/O link protocol is adapted to include additional virtual channels that can carry command packets for coherency transactions over the link in a format that is acceptable to the I/O protocol. The coherency transactions support cache coherency between processing nodes interconnected by the link. Each processing node may include processing resources that themselves share memory, such as symmetrical multiprocessor configuration. In this case, coherency will have to be maintained both at the intranode level as well as the internode level. A remote line directory is maintained by each processing node so that it can track the state and location of all of the lines from its local memory that have been provided to other remote nodes. A node controller initiates transactions over the link in response to local transactions initiated within itself, and initiates transactions over the link based on local transactions initiated within itself. Flow control is provided for each of the coherency virtual channels either by software through credits or through a buffer free command packet that is sent to a source node by a target node indicating the availability of virtual channel buffering for that channel.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Multiprocessor computer system with sectored cache line mechanism for cache intervention

A method of maintaining coherency in a multiprocessor computer system wherein each processing unit's cache has sectored cache lines. A first cache coherency state is assigned to one of the sectors of a particular cache line, and a second cache coherency state, different from the first cache coherency state, is assigned to the overall cache line while maintaining the first cache coherency state for the first sector. The first cache coherency state may provide an indication that the first sector contains a valid value which is not shared with any other cache (i.e., an exclusive or modified state), and the second cache coherency state may provide an indication that at least one of the sectors in the cache line contains a valid value which is shared with at least one other cache (a shared, recently-read, or tagged state). Other coherency states may be applied to other sectors in the same cache line. Partial intervention may be achieved by issuing a request to retrieve an entire cache line, and sourcing only a first sector of the cache line in response to the request. A second sector of the same cache line may be sourced from a third cache. Other sectors may also be sourced from a system memory device of the computer system as well. Appropriate system bus codes are utilized to transmit cache operations to the system bus and indicate which sectors of the cache line are targets of the cache operation.
Owner:GOOGLE LLC

Method and apparatus for avoiding data bus grant starvation in a non-fair, prioritized arbiter for a split bus system with independent address and data bus grants

InactiveUS6535941B1Reduce delaysSpeeding up data bus grant processMemory systemsMulti processorAddress bus
A distributed system structure for a large-way, symmetric multiprocessor system using a bus-based cache-coherence protocol is provided. The distributed system structure contains an address switch, multiple memory subsystems, and multiple master devices, either processors, I/O agents, or coherent memory adapters, organized into a set of nodes supported by a node controller. The node controller receives transactions from a master device, communicates with a master device as another master device or as a slave device, and queues transactions received from a master device. Since the achievement of coherency is distributed in time and space, the node controller helps to maintain cache coherency. In order to reduce the delays in giving address bus grants, a bus arbiter for a bus connected to a processor and a particular port of the node controller parks the address bus towards the processor. A history of address bus grants is kept to determine whether any of the previous address bus grants could be used to satisfy an address bus request associated with a data bus request. If one of them qualifies, the data bus grant is given immediately, speeding up the data bus grant process by anywhere from one to many cycles depending on the requests for the address bus from the higher priority node controller.
Owner:IBM CORP

Multiprocessor computer system having multiple coherency regions and software process migration between coherency regions without cache purges

A multiprocessor computer system has a plurality of processing nodes which use processor state information to determine which coherent caches in the system are required to examine a coherency transaction produced by a single originating processor's storage request. A node of the computer has dynamic coherency boundaries such that the hardware uses only a subset of the total processors in a large system for a single workload at any specific point in time and can optimize the cache coherency as the supervisor software or firmware expands and contracts the number of processors which are being used to run any single workload. Multiple instances of a node can be connected with a second level controller to create a large multiprocessor system. The node controller uses the mode bits to determine which processors must receive any given transaction that is received by the node controller. The second level controller uses the mode bits to determine which nodes must receive any given transaction that is received by the second level controller. Logical partitions are mapped to allowable physical processors. Cache coherence regions which encompass subsets of the total number of processors and caches in the system are chosen for their physical proximity. A distinct cache coherency region can be defined for each partition using a hypervisor.
Owner:IBM CORP

Avoiding inconsistencies between multiple translators in an object-addressed memory hierarchy

One embodiment of the present invention provides a system that avoids inconsistencies between multiple translators in an object-addressed memory hierarchy. This object-addressed memory hierarchy includes an object cache, which supports references to object cache lines based on object identifiers instead of physical addresses. During operation, the system receives a read-to-share (RTS) signal for an object cache line, wherein the RTS signal is received from a requesting processor as part of a cache-coherence operation. If no processor owns the object cache line, the system causes the requesting processor to become the owner of the object cache line instead of merely holding a copy the object cache line in the shared state. The system also generates a translation for the object cache line in a translator associated with the requesting processor, wherein the translation maps an object identifier and a corresponding offset to a physical address for the object cache line and reconstructs the contents of the object cache line by reading from memory at that physical address. In this way, if the requesting processor owns the object cache line, a subsequent processor that requests the same object cache line will receive the object cache line from the requesting processor, and will not generate an additional translation for the object cache line. This ensures that multiple translators will not generate inconsistent translations for the same object cache line.
Owner:ORACLE INT CORP

Multiprocessor computer system with sectored cache line mechanism for cache intervention

A method of maintaining coherency in a multiprocessor computer system wherein each processing unit's cache has sectored cache lines. A first cache coherency state is assigned to one of the sectors of a particular cache line, and a second cache coherency state, different from the first cache coherency state, is assigned to the overall cache line while maintaining the first cache coherency state for the first sector. The first cache coherency state may provide an indication that the first sector contains a valid value which is not shared with any other cache (i.e., an exclusive or modified state), and the second cache coherency state may provide an indication that at least one of the sectors in the cache line contains a valid value which is shared with at least one other cache (a shared, recently-read, or tagged state). Other coherency states may be applied to other sectors in the same cache line. Partial intervention may be achieved by issuing a request to retrieve an entire cache line, and sourcing only a first sector of the cache line in response to the request. A second sector of the same cache line may be sourced from a third cache. Other sectors may also be sourced from a system memory device of the computer system as well. Appropriate system bus codes-are utilized to transmit cache operations to the system bus and indicate which sectors of the cache line are targets of the cache operation.
Owner:GOOGLE LLC

On-chip network system supporting cache coherence and data request method

The invention discloses an on-chip network system supporting cache coherence. The network system comprises a network interface part and a router, wherein the network interface part is connected with the router, a multi-core processor and a second level cache; a consistent state cache connected with the multi-core processor is additionally arranged in the network interface part and is used for storing and maintaining the consistent state of a data block in a first level cache of the multi-core processor; and an active directory cache connected with the second level cache is also additionally arranged in the network interface part and is used for caching and maintaining the directory information of the data block usually accessed by the first level cache. Coherence maintenance work is separated from the work of a processor, directory maintenance work is separated from the work of the second level cache, and the directory structure in the second level cache is eliminated, so that the design and the verification process of the multi-core processor are simplified, the storage cost of a chip is reduced, and the performance of the multi-core processor is improved. The invention also discloses a data request method of the system.
Owner:TSINGHUA UNIV

Extension Cache Coherence protocol-based multi-level consistency simulation domain verification and test method

The invention discloses an extension Cache Coherence protocol-based multi-level consistency domain simulation verification and test method. An extension Cache Coherence protocol-based multi-level consistency domain CC-NUMA (Cache Coherent Non-Uniform Memory Access) system protocol simulation model is constructed. A protocol table inquiring and state converting executing mechanism in a key node of a system ensures that a Cache Coherence protocol is maintained in a single computing domain and is simultaneous maintained among a plurality of computing domains, and accuracy and stability are ensured by intra-domain and inter-domain transmission; and a credible protocol inlet conversion coverage rate evaluating drive verification method is provided, transactions are processed by loading an optimized transaction generator promoting model, a coverage rate index is obtained after the operation is ended, and the verification efficiency is increased in comparison with a random transaction promoting mechanism. Through constructing one multi-processor multi-consistency domain verification system model and developing relevant simulation verification, the applicability and the effectiveness of the method are further confirmed.
Owner:LANGCHAO ELECTRONIC INFORMATION IND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products