Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

729results about "Electrode disposition" patented technology

AC plasma display panel

Described herein is an AC plasma display panel in which a discharge part is separated from a bus electrode and a partition wall. In this AC plasma display panel, a high emission efficiency can be obtained. Also described is another AC plasma display panel in which a data electrode having a large width part around the surface discharging gap and a narrow width part. The data electrode may further include a medium width part. In this AC plasma display panel, since counter discharge always occurs near a discharge gap of a scanning electrode by employing the data electrode having a specified shape, a high resolution panel with full-color display can be realized.
Owner:PANASONIC CORP

Gas dischargeable panel

A gas discharge panel includes a first substrate and a second substrate. A plurality of display electrode pairs which are each made up of a sustain electrode and a scan electrode are formed on the first substrate, and the first substrate and the second substrate are set facing each other with a plurality of barrier ribs in between so as to form a plurality of cells. In this gas discharge panel, at least one of the sustain electrode and the scan electrode includes: a plurality of line parts; and a discharge developing part which makes a gap between adjacent line parts smaller in areas corresponding to channels between adjacent barrier ribs than in areas corresponding to the barrier ribs.
Owner:PANASONIC CORP

Plasma display panel

A plasma display panel capable of being fast driven with low voltage by reducing a distance between an address electrode and a Y electrode. The plasma display panel includes a pair of substrates, discharge electrodes, and an address electrode. The substrates are arranged at a predetermined interval to face each other and form a plurality of discharge spaces between facing surfaces of the substrates. The discharge electrodes are arranged at predetermined intervals between the substrates. The address electrode is arranged a predetermined distance apart from the discharge electrodes in a direction where the substrates are arranged, and defines each of the discharge spaces in cooperation with the discharge electrodes.
Owner:SAMSUNG SDI CO LTD

[alternating current plasma display panel]

An alternating current plasma display panel is provided. The alternating current plasma display panel includes a plurality of first sub-pixels, a plurality of second sub-pixels, a plurality of third sub-pixels, a plurality of common data electrodes and a plurality of row electrodes. The first sub-pixels, the second sub-pixels and the third sub-pixels are disposed in a delta configuration. The common data electrodes are disposed below the sub-pixels, and the row electrodes are disposed above the sub-pixels. The amount of the first sub-pixels, the second sub-pixels and the third sub-pixels passed through by each of the common data electrodes are the same. The alternating current plasma display penal can reduce the number of data driving chips and effectively improve the quality of image.
Owner:AU OPTRONICS CORP

Plasma display panel having delta discharge cell arrangement

InactiveUS6853136B2Stable addressingImproving address voltage marginAddress electrodesGas discharge vessels/containersEngineeringPlasma display
A plasma display panel includes a first substrate and a second substrate, the first substrate and the second substrate being provided with a predetermined gap therebetween. Barrier ribs are formed in a non-striped pattern between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge spaces. A plurality of address electrodes are formed on the first substrate along a direction (y), the address electrodes being formed within and outside discharge spaces. A plurality of sustain electrodes are formed on the second substrate along a direction (x), the sustain electrodes being formed within and outside discharge spaces. The address electrodes include large electrode portions provided within discharge spaces and small electrode portions provided outside the discharge spaces. If a width of large electrode portions is AW, a width of small electrode portions is Aw, and a distance between barrier ribs along direction (x) is D, AW is larger than Aw, and AW is 40-75% of D.
Owner:SAMSUNG SDI CO LTD

Plasma display panel

A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate defining a plurality of discharge cells. Phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the first substrate. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed within an area corresponding to each discharge cell. A distal end of each protrusion electrode includes an indentation such that a gap is formed between the pair of opposing protrusion electrodes, and an aperture is formed in each protrusion electrode.
Owner:SAMSUNG SDI CO LTD

Plasma display panel with various electrode projection configurations

A plasma display panel includes a plurality of row electrodes defining rows of a screen. The row electrodes are arranged at intervals so that adjacent row electrodes are capable of serving as an electrode pair for generating a surface discharge. Each of the row electrodes includes a belt-shaped base extending along the full length of the screen in a direction of the rows and protrusions extending from the base toward an adjacent row electrode in every column.
Owner:HITACHI PLASMA PATENT LICENSING

Plasma display panel

A plasma display panel includes a pair of substrates spaced apart from each other and facing each other, a visible light generator arranged between the pair of substrates, and an electrode layer adapted to apply the same potential to a plane arranged between the pair of substrates at a predetermined angle with respect to a direction perpendicular to the pair of substrates.
Owner:SAMSUNG SDI CO LTD

Gas dischargeable panel

A gas discharge panel includes a first substrate and a second substrate. A plurality of display electrode pairs which are each made up of a sustain electrode and a scan electrode are formed on the first substrate, and the first substrate and the second substrate are set facing each other with a plurality of barrier ribs in between so as to form a plurality of cells. In this gas discharge panel, at least one of the sustain electrode and the scan electrode includes: a plurality of line parts; and a discharge developing part which makes a gap between adjacent line parts smaller in areas corresponding to channels between adjacent barrier ribs than in areas corresponding to the barrier ribs.
Owner:PANASONIC CORP

Plasma display panel having electromagnetic wave shielding layer

A plasma display panel (PDP) which can reduce the cost and time of manufacturing a plasma display device, and which can improve heat transfer efficiency of a plasma display device, comprises: a transparent front substrate; a rear substrate disposed parallel to the front substrate; an electromagnetic wave shielding layer fixed on the front substrate; a plurality of discharge cells defined by barrier ribs disposed between the front substrate and the rear substrate; a plurality of address electrodes extending over the discharge cells and disposed in a given direction; a rear dielectric layer covering the address electrodes; a plurality of fluorescent layers disposed in the discharge cells; a plurality of sustaining electrode pairs extending in a direction which crosses the given direction of the address electrodes; a front dielectric layer covering the sustaining electrode pairs; and a discharge gas filling the discharge cells.
Owner:SAMSUNG SDI CO LTD

Plasma display panel and method for fabricating the same

Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency.
Owner:PANASONIC CORP

Plasma Display Panel And Production Method Therefor

A PDP capable of lowering a discharge initiating voltage with a weak discharge always stabilized during an initialization period even if a Xe partial pressure ratio to a total pressure in discharge gas is increased, improving an image quality with the occurrence of an initializing bright point prevented, preventing the lowering of a light emission efficiency and brightness, and improving brightness; and a production method for simply producing the PDP. The PDP comprises a front panel and a rear panel disposed facing each other with a discharge space provided between them. A fluorescent layer is formed in the area on the discharge space side of the rear panel, and a fluorescent film as a high γ portion is formed in part of the area of its surface. The fluorescent film is formed of a material higher in secondary electron emission coefficient γ than a fluorescent material constituting the fluorescent layer. Part of the surface of the fluorescent layer is covered with the fluorescent film, with the other part facing the discharge space.
Owner:PANASONIC CORP

Method for driving plasma display panel

In a driving method for driving a plasma display panel, achieving improvements on luminous efficiency, brightness and contrast, as well as, low voltage and low power consumption, and also high-speed addressing and sustain therewith, wherein onto a second display electrode is applied pulse voltage in reverse polarity with sustain pulse voltage, nearly in synchronism with the sustain pulse voltage to be applied onto a first display electrode, thereby shifting initial discharge (or, pre-charge) caused between the first display electrode and a metal electrode of a partition portion after the generation thereof into display discharge, thereby forming wall charge and wall voltage on the second display electrode.
Owner:HITACHI LTD

Plasma display panel

A plasma display panel includes a pair of substrates that are arranged opposite to each other, each having a display region to display an image and a non-display region not to display an image. Barrier ribs are located in a space between the substrates for forming a plurality of discharge cells. Phosphor layers are formed in the discharge cells. Address electrodes are formed on one of the substrates. First and second electrodes are formed on the other substrate so as to extend in a direction orthogonal to the address electrodes and are spaced apart from each other to form discharge gaps in the discharge cells. The first and second electrodes extend into the non-display region with different lengths from each other.
Owner:SAMSUNG SDI CO LTD

Plasma display panel

An AC Plasma display panel. In one embodiment of the invention, a plurality of ribs are disposed on a rear substrate forming non-equilateral hexagonal discharge spaces in a delta configuration. A front substrate is disposed opposite the rear substrate. A plurality of bus electrodes substantially extend in a first direction, and each contains a plurality of extending electrodes protruding into corresponding non-equilateral hexagonal discharge spaces.
Owner:AU OPTRONICS CORP

Plasma display panel and plasma display apparatus

A plasma display panel (PDP) not only capable of reducing a discharge start voltage but also of making the discharge start voltage uniform in each cell without being adversely affected by the variations in the distance between electrodes caused during manufacture has been disclosed, wherein a pair of electrodes, provided in each of a plurality of cells respectively in which a discharge is caused to occur selectively for display in a discharge space, has facing edges, respectively, provided for discharge and the distance between the facing edges changes when viewed from a direction perpendicular to a substrate and the edges in each of the plurality of cells have substantially the same shape.
Owner:FUJITSU HITACHI PLASMA DISPLAY LTD

Plasma display panel

A plasma display panel having an excellent image display quality and high reliability is provided by preventing deterioration of a phosphor due to hydrocarbon gas remaining in the plasma display panel. The plasma display panel includes front panel (50) and rear panel (60) disposed opposing each other, and front panel (50) is provided with a plurality of display electrodes composed of a pair of scan electrode (6) and sustain electrode (7), and rear panel (60) has barrier ribs (10) forming discharge cells (11). In the plasma display panel, rear panel (60) includes data electrodes (9) perpendicular to display electrodes composed of a pair of scan electrode (6) and sustain electrode (7) on substrate (2), dielectric layer (13) covering data electrodes (9), reflective layer (20) containing an oxidation catalyst and covering at least a part of dielectric layer (13), and phosphor layer (12) covering reflective layer (20).
Owner:PANASONIC CORP

Apparatus, manufacturing method and driving method of plasma display panel

To provide a plasma display panel which improves the write characteristics, luminous luminance, and luminous efficiency and which has a longer life. On a back glass substrate, data electrodes are formed in the substrate column direction. Over the data electrodes, a dielectric layer is formed. On the dielectric layer, scan electrodes are formed in a substrate row direction. Over the scan electrodes, a dielectric layer is formed. On the dielectric layer, partitions are formed in the substrate column direction. On the dielectric layer including the partitions, a protection layer and a fluorescent material layer are formed. On the other hand, on a front glass substrate, common electrodes and bus electrodes electrically connected to the common electrodes are formed in the substrate row direction so as to be opposed to the scan electrodes. Over the common electrodes and the bus electrodes, a dielectric layer and a protection layer are formed.
Owner:PIONEER CORP

Plasma display panel

A plasma display panel (PDP) includes a front panel, a rear panel disposed parallel to the front panel, first barrier ribs formed of a dielectric substance and disposed between the front panel and the rear panel to define a plurality of discharge cells, front discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells and spaced from the side surfaces of the discharge cells toward interiors of the first barrier ribs by an electrode-burying depth, rear discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells and spaced from the side surfaces of the discharge cells toward the interiors of the first barrier ribs by an electrode-burying depth at the rear side of the first discharge electrodes, a plurality of phosphor layers disposed inside the discharge cells for receiving ultraviolet rays and emitting visible rays, the phosphor layers having different dielectric constants, and a discharge gas filling the discharge cells. The electrode-burying depth corresponding to discharge cells in which phosphor layers having the lowest dielectric constant are formed is smaller than the electrode-burying depth corresponding to discharge cells in which phosphor layers having a relatively high dielectric constant are formed.
Owner:SAMSUNG SDI CO LTD

Surface discharge type plasma display panel having an isosceles delta array type pixel

The present invention relates to an AC drive surface discharge type plasma display panel having an isosceles delta array type pixel. The background art has a problem of being apt to cause a wrong writing discharge and having a narrow writing voltage margin. Then, in the present invention, transparent electrodes for X electrode (T3, T4) in first and second pair subpixel regions (PSPR1, PSPR2) of an isosceles delta array type pixel (P1) are provided at portions farther away from a first write electrode (Wj(B)) in an isolated subpixel region (ISPR). Specifically, a central axis of the third transparent electrode (T3) along a vertical direction (v) is positioned closer to an extending portion (WAE) of a second write electrode (Wj(A)) from a vertical direction central axis of the first pair subpixel region (PSPR1). Similarly, a vertical direction central axis of the fourth transparent electrode (T4) is positioned closer to an extending portion (WCE) of a third write electrode (Wj(C)) from a vertical direction central axis of the second pair subpixel region (PSPR2). The present invention is mainly used for a display device such as a plasma television.
Owner:MITSUBISHI ELECTRIC CORP

Method for preparing plasma display panel

A method of making a plasma display panel, whereby an address electrode is formed on a front substrate, a green sheet is formed to cover the address electrode, a dielectric layer pattern is formed by exposing, developing, and firing the green sheet, a composition for a display electrode is filled in the dielectric layer pattern and then fired to form a patterned display electrode, and a dielectric layer is formed to cover the patterned display electrode, thereby fabricating a front substrate. The green sheet includes a first green sheet that is formed using a dielectric composition, and a second green sheet that is formed on the first green sheet and using a photosensitive dielectric composition.
Owner:SAMSUNG SDI CO LTD

Plasma display with split electrodes

A method of controlling electrodes of a pixel in a plasma display panel. The method includes applying a first voltage to a first electrode of the pixel during a sustain discharge involving the first electrode, and applying a second voltage to a second electrode of the pixel. The first voltage and the second voltage have a relationship that encourages the sustain discharge to extend to the second electrode.
Owner:PANASONIC CORP

Plasma display panel (PDP)

A Plasma Display Panel (PDP) includes: a first substrate including a plurality pairs of sustain electrodes, each of which includes an X electrode and a Y electrode separated from each other by a discharge gap, formed on a lower side thereof, and a first dielectric layer covering the pairs of sustain electrodes; a second substrate facing the first substrate and including address electrodes formed on an upper side thereof to cross the pairs of sustain electrodes, and a second dielectric layer covering the address electrodes; and a barrier rib including first barrier ribs formed on the second dielectric layer to interpose at least one address electrode therebetween, and second barrier ribs crossing the first barrier ribs to define discharge cells, in which a phosphor layer is formed. Each X electrode and each Y electrode respectively include bus electrodes, and transparent electrodes having protrusions, which are spaced apart from the second barrier ribs and corresponding to the discharge cells, and extension units extending from the protrusions and connected to the bus electrodes.
Owner:SAMSUNG SDI CO LTD

Plasma display panel

A plasma display panel capable of increasing a luminous efficiency while decreasing discharge firing voltage while easily generating an address discharge by generating a sustain discharge as facing discharge. The discharge sustain electrodes are on barrier ribs between the two substrates. One of the sustain discharge electrodes extends between discharge cells and the other extends through discharge cells dividing discharge cells into two portions. Each discharge sustain electrode is surrounded by a dielectric material and also a non-transparent MgO protective layer. These electrodes are formed to be tall and narrow to allow for superior facing discharge potential.
Owner:SAMSUNG SDI CO LTD

Plasma display panel

A design for a plasma display panel (PDP). The novel PDP has two separate layers of fluorescent material. One layer of fluorescent material can generate long wavelength from VUV rays and the other fluorescent layer can convert either of VUV or long wavelength ultraviolet rays into visible rays. Such a PDP improves the luminance efficiency by more efficiently using the UV and VUV rays generated during plasma discharge.
Owner:SAMSUNG SDI CO LTD

Plasma display apparatus

A plasma display apparatus includes a plurality of display element electrodes each constituted of a pair of electrode segments having linear edges opposing each other, with a predetermined distance provided therebetween, the width of each of the electrode segments becoming narrower in the direction away from the associated one of the linear edges. The plasma display apparatus also includes a barrier structure, the inner surfaces of which being disposed along the outer ends of the plurality of display element electrodes and thereby defining a plurality of cells each of which is to be activated by the associated one of the plurality of display element electrodes so as to emit light. In the plasma display apparatus, ultraviolet rays caused by a discharge are efficiently transmitted to phosphor members on the surfaces of cells to emit light with a reduced loss of energy.
Owner:RAKUTEN GRP INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products