Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

120results about How to "Simple electrode structure" patented technology

Preparation method for photonic crystal structure film electrode of dye solar cell

The invention discloses a preparation method for a photonic crystal structure film electrode of a dye solar cell in the technical field of solar cells. A photonic crystal structure positive template structure is introduced into the solar cell and is packaged combined with a pyridine complex dye of ruthenium so as to form the photonic crystal dye solar cell with improved efficiency. A photonic crystal structure positive template is prepared through emulsifier-free emulsion polymerization and a vertical deposition method, and a titanium dioxide photonic crystal reverse template is prepared through a sandwich treatment topology, thereby improving an electrode structure of the traditional dye cell, exceeding the limitation of laboratory photo-etching processing and enhancing the application potential thereof. The prepared photonic crystal structure film electrode takes a three-dimension ordered anatase type titanium dioxide hole arranged by an inverse opal structure as the electrode of the dye solar cell, the hole diameter of film materials thereof ranges from 50nm to 500nm, and the thickness ranges from 0.5 micron to 40 microns, thereby enlarging the specific surface area combined with the dye and having higher short circuit current and filling factors.
Owner:SHANGHAI JIAO TONG UNIV

Sulfur/vanadium disulfide/MXene composite material as well as preparation method and application thereof

The invention relates to the technical field of battery materials, in particular to a sulfur/vanadium disulfide/MXene composite material as well as a preparation method and application thereof. According to the preparation method disclosed by the invention, the sulfur loading capacity can be improved due to the high specific surface area and a large number of active sites of the sulfur loading material MXene; MXene has unique flexibility and conductivity, so that the volume change of the positive electrode material can be buffered, and the conductivity of the composite material can be improved; the surface of the MXene is provided with a large number of functional groups and static electricity, so that vanadate ions can be attracted to generate a coordination effect; the vanadate ions areuniformly adsorbed on the surface of the MXene, so that the vanadate ions and a sulfur source generate uniform vanadium disulfide nanosheets on the surface of the MXene in situ at a proper temperature; by introducing the vanadium disulfide nanosheet with catalytic activity and high conductivity into MXene, lithium polysulfide can be chemically adsorbed, and the vanadium disulfide nanosheet can bequickly catalyzed and converted into insoluble Li2S2/Li2S in an electrolyte, so that a serious shuttle effect is inhibited, the stability of the lithium-sulfur battery is improved, and the cycle lifeof the lithium-sulfur battery is prolonged.
Owner:GUANGDONG UNIV OF TECH

Preparation method of lithium-sulfur battery positive electrode

The invention provides a preparation method of a lithium-sulfur battery positive electrode. The preparation method comprises the following steps: uniformly mixing an active substance sulfur, a conductive agent and a binder to obtain a mixture, then adding a dispersing solvent into the mixture, and uniformly mixing to obtain electrode slurry; uniformly coating a positive electrode current collectorwith the electrode slurry to obtain a wet electrode coated with the slurry; freezing the wet electrode coated with the slurry in a low-temperature environment of -80 to -5 DEG C for 1-5 hours until the wet electrode is frozen and formed, so that the dispersing solvent in the wet electrode is solidified and crystallized to obtain a solidified electrode; placing the solidified electrode in a vacuumenvironment with the vacuum degree of 0.1-100Pa for 1-5 hours, so that solid-phase sublimation of ice crystals in the solidified electrode is carried out to obtain a solid-phase sublimated electrode;and carrying out rolling treatment on the solid-phase sublimated electrode, and controlling the porosity of the electrode to be 50-70% to obtain the lithium-sulfur battery positive electrode. The preparation method is simple, and the problem of electrode cracking in the preparation of a high-sulfur-carrying positive electrode by adopting a traditional hot drying method is effectively solved.
Owner:TONGJI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products