Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

33results about How to "Maximizing cost" patented technology

Digital Content Protection Method and Apparatus

<heading lvl="0">Abstract of Disclosure</heading> Before use, a population of tamper-resistant cryptographic enforcement devices is partitioned into groups and issued one or more group keys. Each tamper-resistant device contains multiple computational units to control access to digital content. One of the computational units within each tamper-resistant device communicates with another of the computational units acting as an interface control processor, and serves to protect the contents of a nonvolatile memory from unauthorized access or modification by other portions of the tamper-resistant device, while performing cryptographic computations using the memory contents. Content providers enforce viewing privileges by transmitting encrypted rights keys to a large number of recipient devices. These recipient devices process received messages using the protected processing environment and memory space of the secure unit. The processing result depends on whether the recipient device was specified by the content provider as authorized to view some encrypted digital content. Authorized recipient devices can use the processing result in decrypting the content, while unauthorized devices cannot decrypt the content. A related aspect of the invention provides for securing computational units and controlling attacks. For example, updates to the nonvolatile memory, including program updates, are supported and protected via a cryptographic unlocking and validation process in the secure unit, which can include digital signature verification.
Owner:CRYPTOGRAPHY RESEARCH

Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy

A method provides guidance to the physician during a live bronchoscopy or other endoscopic procedures. The 3D motion of the bronchoscope is estimated using a fast coarse tracking step followed by a fine registration step. The tracking is based on finding a set of corresponding feature points across a plurality of consecutive bronchoscopic video frames, then estimating for the new pose of the bronchoscope. In the preferred embodiment the pose estimation is based on linearization of the rotation matrix. By giving a set of corresponding points across the current bronchoscopic video image, and the CT-based virtual image as an input, the same method can also be used for manual registration. The fine registration step is preferably a gradient-based Gauss-Newton method that maximizes the correlation between the bronchoscopic video image and the CT-based virtual image. The continuous guidance is provided by estimating the 3D motion of the bronchoscope in a loop. Since depth-map information is available, tracking can be done by solving a 3D-2D pose estimation problem. A 3D-2D pose estimation problem is more constrained than a 2D-2D pose estimation problem and does not suffer from the limitations associated with computing an essential matrix. The use of correlation-based cost, instead of mutual information as a registration cost, makes it simpler to use gradient-based methods for registration.
Owner:PENN STATE RES FOUND

Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy

A method provides guidance to the physician during a live bronchoscopy or other endoscopic procedures. The 3D motion of the bronchoscope is estimated using a fast coarse tracking step followed by a fine registration step. The tracking is based on finding a set of corresponding feature points across a plurality of consecutive bronchoscopic video frames, then estimating for the new pose of the bronchoscope. In the preferred embodiment the pose estimation is based on linearization of the rotation matrix. By giving a set of corresponding points across the current bronchoscopic video image, and the CT-based virtual image as an input, the same method can also be used for manual registration. The fine registration step is preferably a gradient-based Gauss-Newton method that maximizes the correlation between the bronchoscopic video image and the CT-based virtual image. The continuous guidance is provided by estimating the 3D motion of the bronchoscope in a loop. Since depth-map information is available, tracking can be done by solving a 3D-2D pose estimation problem. A 3D-2D pose estimation problem is more constrained than a 2D-2D pose estimation problem and does not suffer from the limitations associated with computing an essential matrix. The use of correlation-based cost, instead of mutual information as a registration cost, makes it simpler to use gradient-based methods for registration.
Owner:PENN STATE RES FOUND

Systems and methods for reducing stranded inventory

Determining a particular product mix of old and new products to either minimize stranded inventory of old unique sub-components composing the old product or to minimize cost savings by phasing out the old unique sub-components of the old product is described. When a new product costs the same or more than the old product, a product mix which minimizes stranded inventory is determined. To this end, a liability on inventory of old unique sub-components at a number of build out quantities including the total number of product units to produce is determined. Additionally, a number of old products to produce is selected to correspond to a point where the liability on inventory of old unique sub-components is constant between consecutive build out quantities in order to reduce stranded inventory. When a new product costs less than the old product, a product mix which maximizes cost savings is determined. To this end, a liability on inventory of old unique sub-components at a number of build out quantities including the total number of product units to produce is determined. An economic buildout plan which indicates cost savings resulting from replacing the old product with the cheaper new product at the number of build out quantities including the total number of product units to produce is also determined. A number of old products to produce is selected to correspond to the maximum cost savings as indicated by the largest value in the economic buildout plan.
Owner:LUCENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products