Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1131 results about "Reset button" patented technology

In electronics and technology, a reset button is a button that can reset a device. On video game consoles, the reset button restarts the game, losing the player's unsaved progress. On personal computers, the reset button clears the memory and reboots the machine forcibly. Reset buttons are found on circuit breakers to reset the circuit. This button can cause data corruption so this button often doesn't exist on many machines. Usually, in computers and other electronic devices, it is present as a small button, possibly recessed into the case or only accessible by a pin or similar thin object, to prevent it being pressed accidentally.

GFCI receptacle having blocking means

Located within a GFCI device having a receptacle is a movable contact bearing arm which is held in either a closed or open position with a fixed contact by a latching member that is connected to the spring loaded reset button. The reset button assumes a first or a second position which is determined by the conductive state of the GFCI. When the GFC is in a conducting state, the reset button is substantially fully depressed within the housing of the GFCI. When the GFCI is in a non-conductive state, the reset button projects outward beyond the top surface of the housing of the GCFI. Thus, the movable contact bearing arm, acting through a latching member, determines the position of the reset button. A blocking member located within the body of the GFCI is positioned by the reset button to allow free access of the prongs of a plug into the openings of the receptacle when the reset button is depressed or to block at least one opening of the receptacle to prevent a plug from entering the openings of the receptacle when the reset button projects out beyond the surface of the housing. Thus, when the GFCI is in a conducting state, the reset button is recessed within the GFCI housing and positions the blocking member to the first position to allow the prongs of a plug to be inserted into the receptacle openings. When the GFCI is in a non-conducting state, the reset button protrudes outward from the housing of the GFCI to position the blocking member to the second position to block at least one opening of the receptacle to prevent the prongs of a plug from entering the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a fault state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a fault state and, therefore, can eliminate the need for the bridge contacts.
Owner:LEVITON MFG

GFCI without bridge contacts and having means for automatically blocking a face opening of a protected receptacle when tripped

Located within a GFCI is a movable contact bearing arm which cooperates with at least one fixed contact. When the movable arm is moved up to allow the at least one contact on the arm to close with at least one fixed contact, the GFCI is in a conducting state and current flows from a source of electricity through the closed contacts to a load and to the contacts of a receptacle. When the movable arm is moved down to open the contacts, the GFCI is in a non-conducting state and current cannot flow from the source of electricity to either the load or the receptacle contacts. In this invention, the up and down movement of the movable contact bearing arm is harnessed to move a blocking member located within the housing of the GFCI to a first position to block at least one opening of the receptacle as the movable arm is moved down or to a second position to allow the prongs of a plug to enter the openings of the receptacle as the movable arm is moved up. The downward movement of the movable contact bearing arm occurs when the GFCI goes into a non-conducting state. Resetting the GFCI by pressing in and then releasing a reset button causes the movable contact bearing arm to move up to make contact with the at least one fixed contact. As the movable arm moves up, the blocking member moves to the first or non-blocking position to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a non-conducting state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a non-conducting state and, therefore, the need for the bridge contacts is diminished.
Owner:LEVITON MFG

Circuit interrupting device with automatic end of life test

The present invention provides to a circuit interrupting device, particularly a ground fault circuit interrupter (GFCI), with a test circuit which is capable of automatically generating a simulated leakage current to detect whether the service life of the circuit interrupting device has ended, i.e., whether the main components of the device are working properly, when the device is properly connected to power input terminals and in a tripped state. The test circuit contains an end-of-service-life integrated circuit chip, which is connected to a switch that interacts with the reset button, thereby, by observing whether the device is capable of resetting, a user can determine whether the service life of the device has ended, i.e., if the device can be reset, the device is working properly; if the device cannot be reset, the service life of the device has ended. Optionally, the circuit interrupting device contains an indicating light on the face of the device, thereby, by observing whether a normal status indicating light or a problem status indicating light is turned on and displayed on the face of the device, the user can determine whether the service life of the device has ended. The circuit interrupting device also possesses a forcible tripping mechanism through the operation of the test button to interrupt the power output to the device. The present invention also provides methods for detecting the end of service life of the circuit interrupting device.
Owner:HUANG HUADAO

GFCI receptacle having plug blocking means

A shaped member having at least one window is located within a GFCI protected receptacle and is operated by movement of the contact arm of the GFCI to assume a first position to block at least one plug receiving opening in the receptacle and a second position which locates the window to allow the prong of a plug to freely enter the face of the receptacle. In operation, when the circuit interrupting device goes into a tripped state, the contact arm moves down to open the circuit. The downward movement of the contact arm, acting through a connecting linkage causes the shaped member to move to the first position, that of blocking at least one opening in the face of the receptacle. Resetting the circuit interrupting device by pressing in and then releasing the reset button of the GFCI causes the main contacts in the circuit interrupting device to close by the upward movement of the contact arm. As the contact arm moves up, it moves the connecting linkage to position the window of the shaped member to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts, one set for connecting a load to the source of electricity and a second set for connecting a user accessible load to the source of electricity. In the GFCI here disclosed the bridge contacts have been eliminated, thus reducing the cost of manufacture by coupling the conductors for both the load and the user accessible load to a single set of contacts.
Owner:LEVITON MFG

GFCI receptacle having blocking means

Located within a GFCI device having a receptacle is a movable contact bearing arm which is held in either a closed or open position with a fixed contact by a latching member that is connected to the spring loaded reset button. The reset button assumes a first or a second position which is determined by the conductive state of the GFCI. When the GFC is in a conducting state, the reset button is substantially fully depressed within the housing of the GFCI. When the GFCI is in a non-conductive state, the reset button projects outward beyond the top surface of the housing of the GCFI. Thus, the movable contact bearing arm, acting through a latching member, determines the position of the reset button. A blocking member located within the body of the GFCI is positioned by the reset button to allow free access of the prongs of a plug into the openings of the receptacle when the reset button is depressed or to block at least one opening of the receptacle to prevent a plug from entering the openings of the receptacle when the reset button projects out beyond the surface of the housing. Thus, when the GFCI is in a conducting state, the reset button is recessed within the GFCI housing and positions the blocking member to the first position to allow the prongs of a plug to be inserted into the receptacle openings. When the GFCI is in a non-conducting state, the reset button protrudes outward from the housing of the GFCI to position the blocking member to the second position to block at least one opening of the receptacle to prevent the prongs of a plug from entering the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a fault state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a fault state and, therefore, can eliminate the need for the bridge contacts.
Owner:LEVITON MFG

Ground fault circuit interrupters providing end of the life test

This invention discloses a ground fault circuit interrupter capable of detecting its end of life, and is characterized by: a pair of flexible metal sheets connected to the power output end are added on the circuit board of the interrupter, and there is a pair of moving contacts on the metal sheets; there are two pairs of fixed contacts on the power output conductors; the two pairs of fixed contacts on the power output conductors respectively correspond to the moving contacts on the power input metal sheets and the moving contacts on flexible metal sheets, thus forming two groups and four pairs of switches. There is also a tripping apparatus on the circuit board, which can release / trip the interrupter, thus cutting off the power output of the interrupter. An end of life detection circuit has also been added to the circuit board. After the interrupter is energized, various components in the interrupter are automatically detected. If it is found that the interrupter has come to the end of its life, the reset button will be prevented from resetting, so that neither the load end of the interrupter nor the power output holes on the surface of the interrupter have any power output. This invention has powerful applications, with sound safety precautions, thus effectively ensuring the personal safety of the user as well as the safety of the appliances.
Owner:HUANG HUADAO

Leakage detecting protection circuit capable of periodically automatically detecting function integrity

The invention provides a leakage detecting protection circuit capable of periodically automatically detecting function integrity. The leakage detecting protection circuit comprises a main loop switch, a resetting button, a tripping coil, a silicon controlled rectifier, an induction coil for detecting leakage current, a self-induction coil for detecting a low-resistance failure and a control chip which drives the switching-on/off of the silicon controlled rectifier by a leakage current detection result, and further comprises a) a timer for periodically outputting a function integrity detection signal, b) a detection signal latching circuit, c) an analogue test switch for generating analogue leakage current, d) a delay output circuit and e) a sampling circuit, wherein the timer outputs the detection signal to the latching circuit and the delay output circuit; and if a function is detected to fail, the delay output circuit outputs a tripping signal to switch the silicon controlled rectifier on, and the main loop switch is switched off. The leakage detecting protection circuit has the main advantages of periodically automatically detecting whether the leakage protection function of the circuit is integral or not without annual testing and avoiding tripping within the service life of the circuit, along with more convenience of use.
Owner:黄华道
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products